TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60017 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (10107ms).
 | – Problem 2 was processed with processor SubtermCriterion (5ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 16 was processed with processor PolynomialLinearRange4iUR (49ms).
 | – Problem 4 was processed with processor SubtermCriterion (2ms).
 | – Problem 5 was processed with processor SubtermCriterion (2ms).
 | – Problem 6 remains open; application of the following processors failed [SubtermCriterion (3ms), DependencyGraph (6ms), PolynomialLinearRange4iUR (3342ms), DependencyGraph (26ms), PolynomialLinearRange4iUR (9411ms), DependencyGraph (6ms), PolynomialLinearRange8NegiUR (30001ms), DependencyGraph (timeout), ReductionPairSAT (timeout)].
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 | – Problem 8 was processed with processor SubtermCriterion (2ms).
 | – Problem 9 was processed with processor SubtermCriterion (1ms).
 | – Problem 10 was processed with processor SubtermCriterion (3ms).
 | – Problem 11 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 17 was processed with processor PolynomialLinearRange4iUR (78ms).
 | – Problem 12 was processed with processor SubtermCriterion (1ms).
 | – Problem 13 was processed with processor SubtermCriterion (2ms).
 | – Problem 14 was processed with processor SubtermCriterion (4ms).
 | – Problem 15 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 6

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, top, cons, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

proper#(cons(X1, X2))proper#(X1)proper#(length(X))length#(proper(X))
uTake1#(mark(X))uTake1#(X)active#(take(s(M), cons(N, IL)))and#(isNat(M), and(isNat(N), isNatIList(IL)))
active#(uTake2(tt, M, N, IL))cons#(N, take(M, IL))active#(uTake2(X1, X2, X3, X4))uTake2#(active(X1), X2, X3, X4)
uTake2#(mark(X1), X2, X3, X4)uTake2#(X1, X2, X3, X4)active#(take(X1, X2))take#(active(X1), X2)
active#(uLength(X1, X2))active#(X1)top#(mark(X))proper#(X)
proper#(uLength(X1, X2))uLength#(proper(X1), proper(X2))proper#(uTake2(X1, X2, X3, X4))proper#(X4)
length#(mark(X))length#(X)proper#(uTake2(X1, X2, X3, X4))uTake2#(proper(X1), proper(X2), proper(X3), proper(X4))
active#(take(X1, X2))active#(X2)active#(length(cons(N, L)))and#(isNat(N), isNatList(L))
active#(length(X))active#(X)isNat#(ok(X))isNat#(X)
and#(mark(X1), X2)and#(X1, X2)active#(uTake1(X))uTake1#(active(X))
isNatIList#(ok(X))isNatIList#(X)active#(take(s(M), cons(N, IL)))isNat#(M)
active#(isNatIList(cons(N, IL)))and#(isNat(N), isNatIList(IL))active#(take(s(M), cons(N, IL)))uTake2#(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
proper#(uTake1(X))proper#(X)cons#(mark(X1), X2)cons#(X1, X2)
active#(take(s(M), cons(N, IL)))isNat#(N)top#(ok(X))active#(X)
active#(and(X1, X2))and#(active(X1), X2)active#(isNatList(take(N, IL)))isNatIList#(IL)
active#(isNatIList(IL))isNatList#(IL)proper#(isNatList(X))proper#(X)
proper#(isNat(X))isNat#(proper(X))take#(ok(X1), ok(X2))take#(X1, X2)
active#(uTake2(tt, M, N, IL))take#(M, IL)active#(and(X1, X2))active#(X2)
proper#(isNat(X))proper#(X)uLength#(mark(X1), X2)uLength#(X1, X2)
active#(uTake1(X))active#(X)active#(s(X))s#(active(X))
s#(ok(X))s#(X)proper#(uTake2(X1, X2, X3, X4))proper#(X3)
active#(isNatList(cons(N, L)))isNat#(N)proper#(length(X))proper#(X)
active#(take(X1, X2))take#(X1, active(X2))proper#(s(X))s#(proper(X))
active#(zeros)cons#(0, zeros)top#(ok(X))top#(active(X))
active#(take(s(M), cons(N, IL)))isNatIList#(IL)proper#(isNatIList(X))isNatIList#(proper(X))
proper#(uTake2(X1, X2, X3, X4))proper#(X2)cons#(ok(X1), ok(X2))cons#(X1, X2)
proper#(and(X1, X2))and#(proper(X1), proper(X2))active#(cons(X1, X2))cons#(active(X1), X2)
active#(uLength(X1, X2))uLength#(active(X1), X2)proper#(and(X1, X2))proper#(X2)
active#(isNat(s(N)))isNat#(N)uTake2#(ok(X1), ok(X2), ok(X3), ok(X4))uTake2#(X1, X2, X3, X4)
active#(isNatIList(cons(N, IL)))isNat#(N)length#(ok(X))length#(X)
active#(length(cons(N, L)))uLength#(and(isNat(N), isNatList(L)), L)active#(and(X1, X2))and#(X1, active(X2))
top#(mark(X))top#(proper(X))proper#(cons(X1, X2))proper#(X2)
active#(isNatIList(cons(N, IL)))isNatIList#(IL)proper#(isNatIList(X))proper#(X)
active#(uLength(tt, L))length#(L)take#(X1, mark(X2))take#(X1, X2)
isNatList#(ok(X))isNatList#(X)proper#(uLength(X1, X2))proper#(X1)
proper#(s(X))proper#(X)active#(isNatList(take(N, IL)))isNat#(N)
active#(isNatList(cons(N, L)))and#(isNat(N), isNatList(L))proper#(isNatList(X))isNatList#(proper(X))
proper#(take(X1, X2))take#(proper(X1), proper(X2))active#(isNatList(cons(N, L)))isNatList#(L)
active#(cons(X1, X2))active#(X1)take#(mark(X1), X2)take#(X1, X2)
proper#(uTake2(X1, X2, X3, X4))proper#(X1)and#(ok(X1), ok(X2))and#(X1, X2)
active#(isNat(length(L)))isNatList#(L)proper#(and(X1, X2))proper#(X1)
active#(length(cons(N, L)))isNatList#(L)active#(take(s(M), cons(N, IL)))and#(isNat(N), isNatIList(IL))
proper#(take(X1, X2))proper#(X1)active#(length(cons(N, L)))isNat#(N)
active#(take(0, IL))uTake1#(isNatIList(IL))proper#(uLength(X1, X2))proper#(X2)
and#(X1, mark(X2))and#(X1, X2)active#(length(X))length#(active(X))
active#(isNatList(take(N, IL)))and#(isNat(N), isNatIList(IL))active#(take(X1, X2))active#(X1)
proper#(take(X1, X2))proper#(X2)active#(uTake2(X1, X2, X3, X4))active#(X1)
s#(mark(X))s#(X)uTake1#(ok(X))uTake1#(X)
proper#(cons(X1, X2))cons#(proper(X1), proper(X2))proper#(uTake1(X))uTake1#(proper(X))
active#(uLength(tt, L))s#(length(L))active#(s(X))active#(X)
active#(and(X1, X2))active#(X1)uLength#(ok(X1), ok(X2))uLength#(X1, X2)
active#(take(0, IL))isNatIList#(IL)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


The following SCCs where found

and#(ok(X1), ok(X2)) → and#(X1, X2)and#(mark(X1), X2) → and#(X1, X2)
and#(X1, mark(X2)) → and#(X1, X2)

uTake2#(mark(X1), X2, X3, X4) → uTake2#(X1, X2, X3, X4)uTake2#(ok(X1), ok(X2), ok(X3), ok(X4)) → uTake2#(X1, X2, X3, X4)

isNat#(ok(X)) → isNat#(X)

take#(mark(X1), X2) → take#(X1, X2)take#(X1, mark(X2)) → take#(X1, X2)
take#(ok(X1), ok(X2)) → take#(X1, X2)

isNatList#(ok(X)) → isNatList#(X)

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

isNatIList#(ok(X)) → isNatIList#(X)

cons#(mark(X1), X2) → cons#(X1, X2)cons#(ok(X1), ok(X2)) → cons#(X1, X2)

length#(mark(X)) → length#(X)length#(ok(X)) → length#(X)

active#(uLength(X1, X2)) → active#(X1)active#(s(X)) → active#(X)
active#(uTake1(X)) → active#(X)active#(take(X1, X2)) → active#(X2)
active#(take(X1, X2)) → active#(X1)active#(length(X)) → active#(X)
active#(and(X1, X2)) → active#(X1)active#(and(X1, X2)) → active#(X2)
active#(cons(X1, X2)) → active#(X1)active#(uTake2(X1, X2, X3, X4)) → active#(X1)

uTake1#(ok(X)) → uTake1#(X)uTake1#(mark(X)) → uTake1#(X)

uLength#(mark(X1), X2) → uLength#(X1, X2)uLength#(ok(X1), ok(X2)) → uLength#(X1, X2)

proper#(uTake2(X1, X2, X3, X4)) → proper#(X4)proper#(uTake1(X)) → proper#(X)
proper#(cons(X1, X2)) → proper#(X1)proper#(isNat(X)) → proper#(X)
proper#(cons(X1, X2)) → proper#(X2)proper#(isNatIList(X)) → proper#(X)
proper#(take(X1, X2)) → proper#(X2)proper#(uTake2(X1, X2, X3, X4)) → proper#(X1)
proper#(uTake2(X1, X2, X3, X4)) → proper#(X2)proper#(and(X1, X2)) → proper#(X1)
proper#(uTake2(X1, X2, X3, X4)) → proper#(X3)proper#(uLength(X1, X2)) → proper#(X1)
proper#(length(X)) → proper#(X)proper#(s(X)) → proper#(X)
proper#(and(X1, X2)) → proper#(X2)proper#(take(X1, X2)) → proper#(X1)
proper#(isNatList(X)) → proper#(X)proper#(uLength(X1, X2)) → proper#(X2)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

isNat#(ok(X))isNat#(X)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

isNat#(ok(X))isNat#(X)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

take#(mark(X1), X2)take#(X1, X2)take#(X1, mark(X2))take#(X1, X2)
take#(ok(X1), ok(X2))take#(X1, X2)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

take#(mark(X1), X2)take#(X1, X2)take#(ok(X1), ok(X2))take#(X1, X2)

Problem 16: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

take#(X1, mark(X2))take#(X1, X2)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, top, cons, nil

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

take#(X1, mark(X2))take#(X1, X2)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(uTake2(X1, X2, X3, X4))proper#(X4)proper#(uTake1(X))proper#(X)
proper#(isNat(X))proper#(X)proper#(cons(X1, X2))proper#(X1)
proper#(cons(X1, X2))proper#(X2)proper#(isNatIList(X))proper#(X)
proper#(take(X1, X2))proper#(X2)proper#(uTake2(X1, X2, X3, X4))proper#(X2)
proper#(uTake2(X1, X2, X3, X4))proper#(X1)proper#(and(X1, X2))proper#(X1)
proper#(uLength(X1, X2))proper#(X1)proper#(uTake2(X1, X2, X3, X4))proper#(X3)
proper#(length(X))proper#(X)proper#(s(X))proper#(X)
proper#(and(X1, X2))proper#(X2)proper#(take(X1, X2))proper#(X1)
proper#(isNatList(X))proper#(X)proper#(uLength(X1, X2))proper#(X2)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(uTake2(X1, X2, X3, X4))proper#(X4)proper#(uTake1(X))proper#(X)
proper#(isNat(X))proper#(X)proper#(cons(X1, X2))proper#(X1)
proper#(cons(X1, X2))proper#(X2)proper#(isNatIList(X))proper#(X)
proper#(take(X1, X2))proper#(X2)proper#(uTake2(X1, X2, X3, X4))proper#(X1)
proper#(uTake2(X1, X2, X3, X4))proper#(X2)proper#(and(X1, X2))proper#(X1)
proper#(uLength(X1, X2))proper#(X1)proper#(uTake2(X1, X2, X3, X4))proper#(X3)
proper#(s(X))proper#(X)proper#(length(X))proper#(X)
proper#(and(X1, X2))proper#(X2)proper#(take(X1, X2))proper#(X1)
proper#(isNatList(X))proper#(X)proper#(uLength(X1, X2))proper#(X2)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

uTake2#(mark(X1), X2, X3, X4)uTake2#(X1, X2, X3, X4)uTake2#(ok(X1), ok(X2), ok(X3), ok(X4))uTake2#(X1, X2, X3, X4)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

uTake2#(mark(X1), X2, X3, X4)uTake2#(X1, X2, X3, X4)uTake2#(ok(X1), ok(X2), ok(X3), ok(X4))uTake2#(X1, X2, X3, X4)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

isNatIList#(ok(X))isNatIList#(X)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

isNatIList#(ok(X))isNatIList#(X)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

length#(mark(X))length#(X)length#(ok(X))length#(X)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

length#(mark(X))length#(X)length#(ok(X))length#(X)

Problem 10: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

uLength#(mark(X1), X2)uLength#(X1, X2)uLength#(ok(X1), ok(X2))uLength#(X1, X2)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

uLength#(mark(X1), X2)uLength#(X1, X2)uLength#(ok(X1), ok(X2))uLength#(X1, X2)

Problem 11: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

and#(ok(X1), ok(X2))and#(X1, X2)and#(mark(X1), X2)and#(X1, X2)
and#(X1, mark(X2))and#(X1, X2)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

and#(ok(X1), ok(X2))and#(X1, X2)and#(mark(X1), X2)and#(X1, X2)

Problem 17: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

and#(X1, mark(X2))and#(X1, X2)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, top, cons, nil

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

and#(X1, mark(X2))and#(X1, X2)

Problem 12: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 13: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(uLength(X1, X2))active#(X1)active#(s(X))active#(X)
active#(uTake1(X))active#(X)active#(take(X1, X2))active#(X2)
active#(take(X1, X2))active#(X1)active#(length(X))active#(X)
active#(and(X1, X2))active#(X1)active#(and(X1, X2))active#(X2)
active#(cons(X1, X2))active#(X1)active#(uTake2(X1, X2, X3, X4))active#(X1)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(uLength(X1, X2))active#(X1)active#(s(X))active#(X)
active#(uTake1(X))active#(X)active#(take(X1, X2))active#(X2)
active#(length(X))active#(X)active#(take(X1, X2))active#(X1)
active#(and(X1, X2))active#(X1)active#(and(X1, X2))active#(X2)
active#(uTake2(X1, X2, X3, X4))active#(X1)active#(cons(X1, X2))active#(X1)

Problem 14: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

uTake1#(ok(X))uTake1#(X)uTake1#(mark(X))uTake1#(X)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

uTake1#(ok(X))uTake1#(X)uTake1#(mark(X))uTake1#(X)

Problem 15: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

isNatList#(ok(X))isNatList#(X)

Rewrite Rules

active(and(tt, T))mark(T)active(isNatIList(IL))mark(isNatList(IL))
active(isNat(0))mark(tt)active(isNat(s(N)))mark(isNat(N))
active(isNat(length(L)))mark(isNatList(L))active(isNatIList(zeros))mark(tt)
active(isNatIList(cons(N, IL)))mark(and(isNat(N), isNatIList(IL)))active(isNatList(nil))mark(tt)
active(isNatList(cons(N, L)))mark(and(isNat(N), isNatList(L)))active(isNatList(take(N, IL)))mark(and(isNat(N), isNatIList(IL)))
active(zeros)mark(cons(0, zeros))active(take(0, IL))mark(uTake1(isNatIList(IL)))
active(uTake1(tt))mark(nil)active(take(s(M), cons(N, IL)))mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL))mark(cons(N, take(M, IL)))active(length(cons(N, L)))mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L))mark(s(length(L)))active(and(X1, X2))and(active(X1), X2)
active(and(X1, X2))and(X1, active(X2))active(s(X))s(active(X))
active(length(X))length(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
active(uTake1(X))uTake1(active(X))active(uTake2(X1, X2, X3, X4))uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2))uLength(active(X1), X2)and(mark(X1), X2)mark(and(X1, X2))
and(X1, mark(X2))mark(and(X1, X2))s(mark(X))mark(s(X))
length(mark(X))mark(length(X))cons(mark(X1), X2)mark(cons(X1, X2))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
uTake1(mark(X))mark(uTake1(X))uTake2(mark(X1), X2, X3, X4)mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2)mark(uLength(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNatIList(X))isNatIList(proper(X))
proper(isNatList(X))isNatList(proper(X))proper(isNat(X))isNat(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(length(X))length(proper(X))proper(zeros)ok(zeros)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(nil)ok(nil)
proper(take(X1, X2))take(proper(X1), proper(X2))proper(uTake1(X))uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4))uTake2(proper(X1), proper(X2), proper(X3), proper(X4))proper(uLength(X1, X2))uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNatIList(ok(X))ok(isNatIList(X))
isNatList(ok(X))ok(isNatList(X))isNat(ok(X))ok(isNat(X))
s(ok(X))ok(s(X))length(ok(X))ok(length(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))take(ok(X1), ok(X2))ok(take(X1, X2))
uTake1(ok(X))ok(uTake1(X))uTake2(ok(X1), ok(X2), ok(X3), ok(X4))ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2))ok(uLength(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, ok, proper, nil, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

isNatList#(ok(X))isNatList#(X)