TIMEOUT
The TRS could not be proven terminating. The proof attempt took 60008 ms.
Problem 1 was processed with processor DependencyGraph (4904ms). | Problem 2 was processed with processor ReductionPairSAT (17453ms). | | Problem 15 remains open; application of the following processors failed [DependencyGraph (661ms), ReductionPairSAT (timeout)]. | Problem 3 was processed with processor SubtermCriterion (1ms). | | Problem 10 was processed with processor ReductionPairSAT (94ms). | | | Problem 16 was processed with processor ReductionPairSAT (51ms). | Problem 4 was processed with processor SubtermCriterion (3ms). | | Problem 11 was processed with processor ReductionPairSAT (93ms). | | | Problem 17 was processed with processor ReductionPairSAT (70ms). | Problem 5 was processed with processor SubtermCriterion (1ms). | | Problem 12 was processed with processor ReductionPairSAT (49ms). | | | Problem 18 was processed with processor ReductionPairSAT (28ms). | Problem 6 was processed with processor SubtermCriterion (1ms). | | Problem 13 was processed with processor ReductionPairSAT (125ms). | | | Problem 19 was processed with processor ReductionPairSAT (68ms). | Problem 7 was processed with processor SubtermCriterion (1ms). | Problem 8 was processed with processor SubtermCriterion (1ms). | Problem 9 was processed with processor SubtermCriterion (1ms). | | Problem 14 was processed with processor ReductionPairSAT (57ms). | | | Problem 20 was processed with processor ReductionPairSAT (31ms).
mark#(cons(X1, X2)) | → | active#(cons(mark(X1), X2)) | mark#(quot(X1, X2)) | → | mark#(X2) | |
mark#(minus(X1, X2)) | → | active#(minus(mark(X1), mark(X2))) | active#(quot(0, s(Y))) | → | mark#(0) | |
mark#(minus(X1, X2)) | → | mark#(X1) | mark#(zWquot(X1, X2)) | → | mark#(X1) | |
mark#(zWquot(X1, X2)) | → | mark#(X2) | mark#(quot(X1, X2)) | → | active#(quot(mark(X1), mark(X2))) | |
mark#(sel(X1, X2)) | → | mark#(X2) | mark#(s(X)) | → | mark#(X) | |
active#(sel(0, cons(X, XS))) | → | mark#(X) | mark#(sel(X1, X2)) | → | mark#(X1) | |
active#(minus(s(X), s(Y))) | → | mark#(minus(X, Y)) | mark#(0) | → | active#(0) | |
mark#(minus(X1, X2)) | → | mark#(X2) | mark#(s(X)) | → | active#(s(mark(X))) | |
mark#(from(X)) | → | mark#(X) | mark#(cons(X1, X2)) | → | mark#(X1) | |
active#(minus(X, 0)) | → | mark#(0) | active#(from(X)) | → | mark#(cons(X, from(s(X)))) | |
mark#(sel(X1, X2)) | → | active#(sel(mark(X1), mark(X2))) | active#(zWquot(nil, XS)) | → | mark#(nil) | |
active#(quot(s(X), s(Y))) | → | mark#(s(quot(minus(X, Y), s(Y)))) | active#(zWquot(XS, nil)) | → | mark#(nil) | |
mark#(from(X)) | → | active#(from(mark(X))) | mark#(zWquot(X1, X2)) | → | active#(zWquot(mark(X1), mark(X2))) | |
active#(zWquot(cons(X, XS), cons(Y, YS))) | → | mark#(cons(quot(X, Y), zWquot(XS, YS))) | active#(sel(s(N), cons(X, XS))) | → | mark#(sel(N, XS)) | |
mark#(quot(X1, X2)) | → | mark#(X1) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
mark#(cons(X1, X2)) | → | active#(cons(mark(X1), X2)) | mark#(quot(X1, X2)) | → | quot#(mark(X1), mark(X2)) | |
active#(quot(s(X), s(Y))) | → | quot#(minus(X, Y), s(Y)) | minus#(X1, mark(X2)) | → | minus#(X1, X2) | |
active#(quot(0, s(Y))) | → | mark#(0) | mark#(minus(X1, X2)) | → | mark#(X1) | |
active#(zWquot(cons(X, XS), cons(Y, YS))) | → | cons#(quot(X, Y), zWquot(XS, YS)) | mark#(zWquot(X1, X2)) | → | mark#(X1) | |
mark#(s(X)) | → | s#(mark(X)) | minus#(X1, active(X2)) | → | minus#(X1, X2) | |
mark#(s(X)) | → | mark#(X) | mark#(sel(X1, X2)) | → | mark#(X1) | |
active#(minus(s(X), s(Y))) | → | mark#(minus(X, Y)) | quot#(active(X1), X2) | → | quot#(X1, X2) | |
mark#(sel(X1, X2)) | → | sel#(mark(X1), mark(X2)) | zWquot#(mark(X1), X2) | → | zWquot#(X1, X2) | |
mark#(from(X)) | → | mark#(X) | mark#(cons(X1, X2)) | → | mark#(X1) | |
zWquot#(X1, mark(X2)) | → | zWquot#(X1, X2) | mark#(minus(X1, X2)) | → | minus#(mark(X1), mark(X2)) | |
active#(minus(X, 0)) | → | mark#(0) | active#(quot(s(X), s(Y))) | → | s#(Y) | |
mark#(sel(X1, X2)) | → | active#(sel(mark(X1), mark(X2))) | active#(from(X)) | → | mark#(cons(X, from(s(X)))) | |
sel#(X1, mark(X2)) | → | sel#(X1, X2) | active#(zWquot(nil, XS)) | → | mark#(nil) | |
active#(quot(s(X), s(Y))) | → | mark#(s(quot(minus(X, Y), s(Y)))) | active#(quot(s(X), s(Y))) | → | s#(quot(minus(X, Y), s(Y))) | |
quot#(X1, mark(X2)) | → | quot#(X1, X2) | sel#(active(X1), X2) | → | sel#(X1, X2) | |
active#(from(X)) | → | s#(X) | cons#(X1, active(X2)) | → | cons#(X1, X2) | |
mark#(from(X)) | → | from#(mark(X)) | active#(minus(s(X), s(Y))) | → | minus#(X, Y) | |
sel#(X1, active(X2)) | → | sel#(X1, X2) | active#(zWquot(XS, nil)) | → | mark#(nil) | |
mark#(from(X)) | → | active#(from(mark(X))) | active#(zWquot(cons(X, XS), cons(Y, YS))) | → | quot#(X, Y) | |
active#(zWquot(cons(X, XS), cons(Y, YS))) | → | mark#(cons(quot(X, Y), zWquot(XS, YS))) | from#(active(X)) | → | from#(X) | |
active#(sel(s(N), cons(X, XS))) | → | mark#(sel(N, XS)) | mark#(quot(X1, X2)) | → | mark#(X1) | |
minus#(active(X1), X2) | → | minus#(X1, X2) | sel#(mark(X1), X2) | → | sel#(X1, X2) | |
mark#(quot(X1, X2)) | → | mark#(X2) | mark#(minus(X1, X2)) | → | active#(minus(mark(X1), mark(X2))) | |
cons#(mark(X1), X2) | → | cons#(X1, X2) | active#(zWquot(cons(X, XS), cons(Y, YS))) | → | zWquot#(XS, YS) | |
quot#(mark(X1), X2) | → | quot#(X1, X2) | from#(mark(X)) | → | from#(X) | |
mark#(zWquot(X1, X2)) | → | mark#(X2) | mark#(quot(X1, X2)) | → | active#(quot(mark(X1), mark(X2))) | |
minus#(mark(X1), X2) | → | minus#(X1, X2) | mark#(nil) | → | active#(nil) | |
mark#(sel(X1, X2)) | → | mark#(X2) | active#(sel(s(N), cons(X, XS))) | → | sel#(N, XS) | |
active#(quot(s(X), s(Y))) | → | minus#(X, Y) | active#(from(X)) | → | cons#(X, from(s(X))) | |
active#(sel(0, cons(X, XS))) | → | mark#(X) | cons#(X1, mark(X2)) | → | cons#(X1, X2) | |
mark#(cons(X1, X2)) | → | cons#(mark(X1), X2) | mark#(minus(X1, X2)) | → | mark#(X2) | |
mark#(0) | → | active#(0) | mark#(s(X)) | → | active#(s(mark(X))) | |
zWquot#(active(X1), X2) | → | zWquot#(X1, X2) | cons#(active(X1), X2) | → | cons#(X1, X2) | |
s#(mark(X)) | → | s#(X) | zWquot#(X1, active(X2)) | → | zWquot#(X1, X2) | |
mark#(zWquot(X1, X2)) | → | active#(zWquot(mark(X1), mark(X2))) | mark#(zWquot(X1, X2)) | → | zWquot#(mark(X1), mark(X2)) | |
s#(active(X)) | → | s#(X) | quot#(X1, active(X2)) | → | quot#(X1, X2) | |
active#(from(X)) | → | from#(s(X)) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
from#(active(X)) → from#(X) | from#(mark(X)) → from#(X) |
minus#(X1, active(X2)) → minus#(X1, X2) | minus#(mark(X1), X2) → minus#(X1, X2) |
minus#(X1, mark(X2)) → minus#(X1, X2) | minus#(active(X1), X2) → minus#(X1, X2) |
zWquot#(X1, active(X2)) → zWquot#(X1, X2) | zWquot#(mark(X1), X2) → zWquot#(X1, X2) |
zWquot#(X1, mark(X2)) → zWquot#(X1, X2) | zWquot#(active(X1), X2) → zWquot#(X1, X2) |
quot#(X1, active(X2)) → quot#(X1, X2) | quot#(mark(X1), X2) → quot#(X1, X2) |
quot#(active(X1), X2) → quot#(X1, X2) | quot#(X1, mark(X2)) → quot#(X1, X2) |
cons#(X1, active(X2)) → cons#(X1, X2) | cons#(mark(X1), X2) → cons#(X1, X2) |
cons#(X1, mark(X2)) → cons#(X1, X2) | cons#(active(X1), X2) → cons#(X1, X2) |
s#(mark(X)) → s#(X) | s#(active(X)) → s#(X) |
sel#(mark(X1), X2) → sel#(X1, X2) | sel#(active(X1), X2) → sel#(X1, X2) |
sel#(X1, active(X2)) → sel#(X1, X2) | sel#(X1, mark(X2)) → sel#(X1, X2) |
mark#(cons(X1, X2)) → active#(cons(mark(X1), X2)) | mark#(quot(X1, X2)) → mark#(X2) |
mark#(minus(X1, X2)) → active#(minus(mark(X1), mark(X2))) | active#(quot(0, s(Y))) → mark#(0) |
mark#(minus(X1, X2)) → mark#(X1) | mark#(zWquot(X1, X2)) → mark#(X1) |
mark#(zWquot(X1, X2)) → mark#(X2) | mark#(quot(X1, X2)) → active#(quot(mark(X1), mark(X2))) |
mark#(nil) → active#(nil) | mark#(sel(X1, X2)) → mark#(X2) |
mark#(s(X)) → mark#(X) | active#(sel(0, cons(X, XS))) → mark#(X) |
mark#(sel(X1, X2)) → mark#(X1) | active#(minus(s(X), s(Y))) → mark#(minus(X, Y)) |
mark#(minus(X1, X2)) → mark#(X2) | mark#(0) → active#(0) |
mark#(s(X)) → active#(s(mark(X))) | mark#(from(X)) → mark#(X) |
mark#(cons(X1, X2)) → mark#(X1) | active#(minus(X, 0)) → mark#(0) |
mark#(sel(X1, X2)) → active#(sel(mark(X1), mark(X2))) | active#(from(X)) → mark#(cons(X, from(s(X)))) |
active#(zWquot(nil, XS)) → mark#(nil) | active#(quot(s(X), s(Y))) → mark#(s(quot(minus(X, Y), s(Y)))) |
active#(zWquot(XS, nil)) → mark#(nil) | mark#(from(X)) → active#(from(mark(X))) |
mark#(zWquot(X1, X2)) → active#(zWquot(mark(X1), mark(X2))) | active#(zWquot(cons(X, XS), cons(Y, YS))) → mark#(cons(quot(X, Y), zWquot(XS, YS))) |
active#(sel(s(N), cons(X, XS))) → mark#(sel(N, XS)) | mark#(quot(X1, X2)) → mark#(X1) |
mark#(cons(X1, X2)) | → | active#(cons(mark(X1), X2)) | mark#(quot(X1, X2)) | → | mark#(X2) | |
mark#(minus(X1, X2)) | → | active#(minus(mark(X1), mark(X2))) | active#(quot(0, s(Y))) | → | mark#(0) | |
mark#(minus(X1, X2)) | → | mark#(X1) | mark#(zWquot(X1, X2)) | → | mark#(X1) | |
mark#(zWquot(X1, X2)) | → | mark#(X2) | mark#(quot(X1, X2)) | → | active#(quot(mark(X1), mark(X2))) | |
mark#(nil) | → | active#(nil) | mark#(sel(X1, X2)) | → | mark#(X2) | |
mark#(s(X)) | → | mark#(X) | active#(sel(0, cons(X, XS))) | → | mark#(X) | |
mark#(sel(X1, X2)) | → | mark#(X1) | active#(minus(s(X), s(Y))) | → | mark#(minus(X, Y)) | |
mark#(0) | → | active#(0) | mark#(minus(X1, X2)) | → | mark#(X2) | |
mark#(s(X)) | → | active#(s(mark(X))) | mark#(from(X)) | → | mark#(X) | |
mark#(cons(X1, X2)) | → | mark#(X1) | active#(minus(X, 0)) | → | mark#(0) | |
active#(from(X)) | → | mark#(cons(X, from(s(X)))) | mark#(sel(X1, X2)) | → | active#(sel(mark(X1), mark(X2))) | |
active#(zWquot(nil, XS)) | → | mark#(nil) | active#(quot(s(X), s(Y))) | → | mark#(s(quot(minus(X, Y), s(Y)))) | |
active#(zWquot(XS, nil)) | → | mark#(nil) | mark#(from(X)) | → | active#(from(mark(X))) | |
mark#(zWquot(X1, X2)) | → | active#(zWquot(mark(X1), mark(X2))) | active#(zWquot(cons(X, XS), cons(Y, YS))) | → | mark#(cons(quot(X, Y), zWquot(XS, YS))) | |
active#(sel(s(N), cons(X, XS))) | → | mark#(sel(N, XS)) | mark#(quot(X1, X2)) | → | mark#(X1) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
minus: all arguments are removed from minus
mark: all arguments are removed from mark
from: all arguments are removed from from
mark#: all arguments are removed from mark#
0: all arguments are removed from 0
s: all arguments are removed from s
zWquot: all arguments are removed from zWquot
active: collapses to 1
active#: collapses to 1
quot: all arguments are removed from quot
sel: all arguments are removed from sel
cons: all arguments are removed from cons
nil: all arguments are removed from nil
active(sel(0, cons(X, XS))) → mark(X) | cons(active(X1), X2) → cons(X1, X2) |
active(quot(0, s(Y))) → mark(0) | from(mark(X)) → from(X) |
minus(X1, active(X2)) → minus(X1, X2) | sel(X1, mark(X2)) → sel(X1, X2) |
zWquot(X1, mark(X2)) → zWquot(X1, X2) | mark(s(X)) → active(s(mark(X))) |
minus(mark(X1), X2) → minus(X1, X2) | active(zWquot(nil, XS)) → mark(nil) |
quot(X1, mark(X2)) → quot(X1, X2) | minus(X1, mark(X2)) → minus(X1, X2) |
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2))) | cons(X1, mark(X2)) → cons(X1, X2) |
active(minus(X, 0)) → mark(0) | mark(from(X)) → active(from(mark(X))) |
active(from(X)) → mark(cons(X, from(s(X)))) | quot(X1, active(X2)) → quot(X1, X2) |
quot(mark(X1), X2) → quot(X1, X2) | active(minus(s(X), s(Y))) → mark(minus(X, Y)) |
mark(nil) → active(nil) | mark(0) → active(0) |
s(active(X)) → s(X) | active(sel(s(N), cons(X, XS))) → mark(sel(N, XS)) |
from(active(X)) → from(X) | cons(X1, active(X2)) → cons(X1, X2) |
minus(active(X1), X2) → minus(X1, X2) | active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS))) |
zWquot(mark(X1), X2) → zWquot(X1, X2) | zWquot(active(X1), X2) → zWquot(X1, X2) |
quot(active(X1), X2) → quot(X1, X2) | zWquot(X1, active(X2)) → zWquot(X1, X2) |
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2))) | sel(X1, active(X2)) → sel(X1, X2) |
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2))) | active(zWquot(XS, nil)) → mark(nil) |
cons(mark(X1), X2) → cons(X1, X2) | mark(cons(X1, X2)) → active(cons(mark(X1), X2)) |
s(mark(X)) → s(X) | sel(active(X1), X2) → sel(X1, X2) |
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2))) | active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y)))) |
sel(mark(X1), X2) → sel(X1, X2) |
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(nil) → active#(nil) |
cons#(X1, active(X2)) | → | cons#(X1, X2) | cons#(mark(X1), X2) | → | cons#(X1, X2) | |
cons#(X1, mark(X2)) | → | cons#(X1, X2) | cons#(active(X1), X2) | → | cons#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
The following projection was used:
Thus, the following dependency pairs are removed:
cons#(mark(X1), X2) | → | cons#(X1, X2) | cons#(active(X1), X2) | → | cons#(X1, X2) |
cons#(X1, active(X2)) | → | cons#(X1, X2) | cons#(X1, mark(X2)) | → | cons#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: minus, 0, s, zWquot, active, mark, from, quot, sel, nil, cons
cons#: collapses to 2
minus: all arguments are removed from minus
0: all arguments are removed from 0
s: all arguments are removed from s
zWquot: 1 2
active: 1
mark: collapses to 1
from: all arguments are removed from from
sel: 1 2
quot: 1 2
cons: all arguments are removed from cons
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
cons#(X1, active(X2)) → cons#(X1, X2) |
cons#(X1, mark(X2)) | → | cons#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
cons#: collapses to 2
minus: all arguments are removed from minus
0: all arguments are removed from 0
s: all arguments are removed from s
zWquot: all arguments are removed from zWquot
active: all arguments are removed from active
mark: 1
from: 1
sel: all arguments are removed from sel
quot: all arguments are removed from quot
cons: 1
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
cons#(X1, mark(X2)) → cons#(X1, X2) |
zWquot#(X1, active(X2)) | → | zWquot#(X1, X2) | zWquot#(mark(X1), X2) | → | zWquot#(X1, X2) | |
zWquot#(X1, mark(X2)) | → | zWquot#(X1, X2) | zWquot#(active(X1), X2) | → | zWquot#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
The following projection was used:
Thus, the following dependency pairs are removed:
zWquot#(mark(X1), X2) | → | zWquot#(X1, X2) | zWquot#(active(X1), X2) | → | zWquot#(X1, X2) |
zWquot#(X1, active(X2)) | → | zWquot#(X1, X2) | zWquot#(X1, mark(X2)) | → | zWquot#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: minus, 0, s, zWquot, active, mark, from, quot, sel, nil, cons
zWquot#: collapses to 2
minus: collapses to 1
0: all arguments are removed from 0
s: all arguments are removed from s
zWquot: all arguments are removed from zWquot
active: collapses to 1
mark: 1
from: all arguments are removed from from
sel: 2
quot: all arguments are removed from quot
cons: all arguments are removed from cons
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
zWquot#(X1, mark(X2)) → zWquot#(X1, X2) |
zWquot#(X1, active(X2)) | → | zWquot#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
zWquot#: collapses to 2
minus: all arguments are removed from minus
0: all arguments are removed from 0
s: all arguments are removed from s
zWquot: all arguments are removed from zWquot
active: 1
mark: 1
from: all arguments are removed from from
sel: all arguments are removed from sel
quot: 1 2
cons: 1 2
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
zWquot#(X1, active(X2)) → zWquot#(X1, X2) |
minus#(X1, active(X2)) | → | minus#(X1, X2) | minus#(mark(X1), X2) | → | minus#(X1, X2) | |
minus#(X1, mark(X2)) | → | minus#(X1, X2) | minus#(active(X1), X2) | → | minus#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
The following projection was used:
Thus, the following dependency pairs are removed:
minus#(mark(X1), X2) | → | minus#(X1, X2) | minus#(active(X1), X2) | → | minus#(X1, X2) |
minus#(X1, active(X2)) | → | minus#(X1, X2) | minus#(X1, mark(X2)) | → | minus#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: minus, 0, s, zWquot, active, mark, from, quot, sel, nil, cons
minus: all arguments are removed from minus
0: all arguments are removed from 0
s: all arguments are removed from s
zWquot: all arguments are removed from zWquot
active: collapses to 1
mark: 1
minus#: collapses to 2
from: all arguments are removed from from
sel: 1
quot: 1 2
cons: all arguments are removed from cons
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
minus#(X1, mark(X2)) → minus#(X1, X2) |
minus#(X1, active(X2)) | → | minus#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
minus: all arguments are removed from minus
0: all arguments are removed from 0
s: all arguments are removed from s
zWquot: 1 2
active: 1
mark: all arguments are removed from mark
minus#: collapses to 2
from: all arguments are removed from from
sel: all arguments are removed from sel
quot: 2
cons: all arguments are removed from cons
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
minus#(X1, active(X2)) → minus#(X1, X2) |
sel#(mark(X1), X2) | → | sel#(X1, X2) | sel#(active(X1), X2) | → | sel#(X1, X2) | |
sel#(X1, active(X2)) | → | sel#(X1, X2) | sel#(X1, mark(X2)) | → | sel#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
The following projection was used:
Thus, the following dependency pairs are removed:
sel#(active(X1), X2) | → | sel#(X1, X2) | sel#(mark(X1), X2) | → | sel#(X1, X2) |
sel#(X1, active(X2)) | → | sel#(X1, X2) | sel#(X1, mark(X2)) | → | sel#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: minus, 0, s, zWquot, active, mark, from, quot, sel, nil, cons
minus: 2
0: all arguments are removed from 0
s: collapses to 1
zWquot: all arguments are removed from zWquot
active: collapses to 1
mark: 1
from: all arguments are removed from from
sel#: collapses to 2
sel: all arguments are removed from sel
quot: all arguments are removed from quot
cons: collapses to 1
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
sel#(X1, mark(X2)) → sel#(X1, X2) |
sel#(X1, active(X2)) | → | sel#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
minus: all arguments are removed from minus
0: all arguments are removed from 0
s: all arguments are removed from s
zWquot: all arguments are removed from zWquot
active: 1
mark: all arguments are removed from mark
from: all arguments are removed from from
sel#: 2
sel: 1 2
quot: 1
cons: 1 2
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
sel#(X1, active(X2)) → sel#(X1, X2) |
from#(active(X)) | → | from#(X) | from#(mark(X)) | → | from#(X) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
The following projection was used:
Thus, the following dependency pairs are removed:
from#(active(X)) | → | from#(X) | from#(mark(X)) | → | from#(X) |
s#(mark(X)) | → | s#(X) | s#(active(X)) | → | s#(X) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
The following projection was used:
Thus, the following dependency pairs are removed:
s#(mark(X)) | → | s#(X) | s#(active(X)) | → | s#(X) |
quot#(X1, active(X2)) | → | quot#(X1, X2) | quot#(mark(X1), X2) | → | quot#(X1, X2) | |
quot#(active(X1), X2) | → | quot#(X1, X2) | quot#(X1, mark(X2)) | → | quot#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
The following projection was used:
Thus, the following dependency pairs are removed:
quot#(mark(X1), X2) | → | quot#(X1, X2) | quot#(active(X1), X2) | → | quot#(X1, X2) |
quot#(X1, active(X2)) | → | quot#(X1, X2) | quot#(X1, mark(X2)) | → | quot#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: minus, 0, s, zWquot, active, mark, from, quot, sel, nil, cons
minus: 1 2
0: all arguments are removed from 0
quot#: 1 2
s: collapses to 1
zWquot: all arguments are removed from zWquot
active: 1
mark: collapses to 1
from: collapses to 1
sel: 1 2
quot: 1
cons: all arguments are removed from cons
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
quot#(X1, active(X2)) → quot#(X1, X2) |
quot#(X1, mark(X2)) | → | quot#(X1, X2) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | active(sel(0, cons(X, XS))) | → | mark(X) | |
active(sel(s(N), cons(X, XS))) | → | mark(sel(N, XS)) | active(minus(X, 0)) | → | mark(0) | |
active(minus(s(X), s(Y))) | → | mark(minus(X, Y)) | active(quot(0, s(Y))) | → | mark(0) | |
active(quot(s(X), s(Y))) | → | mark(s(quot(minus(X, Y), s(Y)))) | active(zWquot(XS, nil)) | → | mark(nil) | |
active(zWquot(nil, XS)) | → | mark(nil) | active(zWquot(cons(X, XS), cons(Y, YS))) | → | mark(cons(quot(X, Y), zWquot(XS, YS))) | |
mark(from(X)) | → | active(from(mark(X))) | mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | |
mark(s(X)) | → | active(s(mark(X))) | mark(sel(X1, X2)) | → | active(sel(mark(X1), mark(X2))) | |
mark(0) | → | active(0) | mark(minus(X1, X2)) | → | active(minus(mark(X1), mark(X2))) | |
mark(quot(X1, X2)) | → | active(quot(mark(X1), mark(X2))) | mark(zWquot(X1, X2)) | → | active(zWquot(mark(X1), mark(X2))) | |
mark(nil) | → | active(nil) | from(mark(X)) | → | from(X) | |
from(active(X)) | → | from(X) | cons(mark(X1), X2) | → | cons(X1, X2) | |
cons(X1, mark(X2)) | → | cons(X1, X2) | cons(active(X1), X2) | → | cons(X1, X2) | |
cons(X1, active(X2)) | → | cons(X1, X2) | s(mark(X)) | → | s(X) | |
s(active(X)) | → | s(X) | sel(mark(X1), X2) | → | sel(X1, X2) | |
sel(X1, mark(X2)) | → | sel(X1, X2) | sel(active(X1), X2) | → | sel(X1, X2) | |
sel(X1, active(X2)) | → | sel(X1, X2) | minus(mark(X1), X2) | → | minus(X1, X2) | |
minus(X1, mark(X2)) | → | minus(X1, X2) | minus(active(X1), X2) | → | minus(X1, X2) | |
minus(X1, active(X2)) | → | minus(X1, X2) | quot(mark(X1), X2) | → | quot(X1, X2) | |
quot(X1, mark(X2)) | → | quot(X1, X2) | quot(active(X1), X2) | → | quot(X1, X2) | |
quot(X1, active(X2)) | → | quot(X1, X2) | zWquot(mark(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, mark(X2)) | → | zWquot(X1, X2) | zWquot(active(X1), X2) | → | zWquot(X1, X2) | |
zWquot(X1, active(X2)) | → | zWquot(X1, X2) |
Termination of terms over the following signature is verified: 0, minus, s, zWquot, active, mark, from, sel, quot, cons, nil
minus: 1 2
0: all arguments are removed from 0
quot#: collapses to 2
s: all arguments are removed from s
zWquot: all arguments are removed from zWquot
active: all arguments are removed from active
mark: 1
from: collapses to 1
sel: 1 2
quot: 1 2
cons: 1
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
quot#(X1, mark(X2)) → quot#(X1, X2) |