YES

The TRS could be proven terminating. The proof took 275 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (35ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (124ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

p#(s(0))0#f#(s(0))f#(p(s(0)))
activate#(n__f(X))f#(activate(X))activate#(n__s(X))activate#(X)
f#(0)0#f#(s(0))s#(0)
f#(s(0))p#(s(0))f#(s(0))0#
activate#(n__f(X))activate#(X)activate#(n__0)0#
activate#(n__s(X))s#(activate(X))

Rewrite Rules

f(0)cons(0, n__f(n__s(n__0)))f(s(0))f(p(s(0)))
p(s(0))0f(X)n__f(X)
s(X)n__s(X)0n__0
activate(n__f(X))f(activate(X))activate(n__s(X))s(activate(X))
activate(n__0)0activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__s, f, activate, n__0, 0, s, p, n__f, cons

Strategy


The following SCCs where found

activate#(n__s(X)) → activate#(X)activate#(n__f(X)) → activate#(X)

f#(s(0)) → f#(p(s(0)))

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

f#(s(0))f#(p(s(0)))

Rewrite Rules

f(0)cons(0, n__f(n__s(n__0)))f(s(0))f(p(s(0)))
p(s(0))0f(X)n__f(X)
s(X)n__s(X)0n__0
activate(n__f(X))f(activate(X))activate(n__s(X))s(activate(X))
activate(n__0)0activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__s, f, activate, n__0, 0, s, p, n__f, cons

Strategy


Polynomial Interpretation

Improved Usable rules

p(s(0))00n__0

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

f#(s(0))f#(p(s(0)))

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

activate#(n__s(X))activate#(X)activate#(n__f(X))activate#(X)

Rewrite Rules

f(0)cons(0, n__f(n__s(n__0)))f(s(0))f(p(s(0)))
p(s(0))0f(X)n__f(X)
s(X)n__s(X)0n__0
activate(n__f(X))f(activate(X))activate(n__s(X))s(activate(X))
activate(n__0)0activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__s, f, activate, n__0, 0, s, p, n__f, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

activate#(n__s(X))activate#(X)activate#(n__f(X))activate#(X)