YES

The TRS could be proven terminating. The proof took 24001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (677ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 8 was processed with processor SubtermCriterion (0ms).
 | – Problem 3 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 9 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (13ms).
 |    | – Problem 10 was processed with processor SubtermCriterion (2ms).
 |    |    | – Problem 12 was processed with processor PolynomialLinearRange4 (41ms).
 |    |    |    | – Problem 14 was processed with processor PolynomialLinearRange4 (25ms).
 | – Problem 5 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 11 was processed with processor SubtermCriterion (0ms).
 | – Problem 6 was processed with processor SubtermCriterion (2ms).
 | – Problem 7 was processed with processor PolynomialLinearRange4 (375ms).
 |    | – Problem 13 was processed with processor PolynomialLinearRange4 (529ms).
 |    |    | – Problem 15 was processed with processor PolynomialLinearRange4 (333ms).
 |    |    |    | – Problem 16 was processed with processor PolynomialLinearRange4 (284ms).
 |    |    |    |    | – Problem 17 was processed with processor PolynomialLinearRange4 (240ms).
 |    |    |    |    |    | – Problem 18 was processed with processor PolynomialLinearRange4 (258ms).
 |    |    |    |    |    |    | – Problem 19 was processed with processor PolynomialLinearRange4 (221ms).
 |    |    |    |    |    |    |    | – Problem 20 was processed with processor PolynomialLinearRange4 (220ms).
 |    |    |    |    |    |    |    |    | – Problem 21 was processed with processor PolynomialLinearRange4 (202ms).
 |    |    |    |    |    |    |    |    |    | – Problem 22 was processed with processor PolynomialLinearRange4 (30ms).
 |    |    |    |    |    |    |    |    |    |    | – Problem 23 was processed with processor ReductionPairSAT (106ms).
 |    |    |    |    |    |    |    |    |    |    |    | – Problem 24 was processed with processor DependencyGraph (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

geq#(active(X1), X2)geq#(X1, X2)mark#(geq(X1, X2))active#(geq(X1, X2))
active#(geq(s(X), s(Y)))mark#(geq(X, Y))minus#(X1, mark(X2))minus#(X1, X2)
if#(X1, X2, active(X3))if#(X1, X2, X3)active#(geq(X, 0))mark#(true)
mark#(s(X))s#(mark(X))active#(if(true, X, Y))mark#(X)
geq#(X1, mark(X2))geq#(X1, X2)active#(geq(0, s(Y)))mark#(false)
minus#(X1, active(X2))minus#(X1, X2)active#(div(0, s(Y)))mark#(0)
geq#(mark(X1), X2)geq#(X1, X2)active#(div(s(X), s(Y)))geq#(X, Y)
active#(div(s(X), s(Y)))div#(minus(X, Y), s(Y))mark#(s(X))mark#(X)
mark#(minus(X1, X2))active#(minus(X1, X2))active#(minus(s(X), s(Y)))mark#(minus(X, Y))
active#(minus(0, Y))mark#(0)mark#(div(X1, X2))mark#(X1)
active#(div(s(X), s(Y)))s#(div(minus(X, Y), s(Y)))mark#(true)active#(true)
div#(X1, active(X2))div#(X1, X2)active#(div(s(X), s(Y)))s#(Y)
active#(geq(s(X), s(Y)))geq#(X, Y)active#(minus(s(X), s(Y)))minus#(X, Y)
active#(div(s(X), s(Y)))if#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)if#(X1, mark(X2), X3)if#(X1, X2, X3)
if#(X1, X2, mark(X3))if#(X1, X2, X3)div#(mark(X1), X2)div#(X1, X2)
if#(mark(X1), X2, X3)if#(X1, X2, X3)mark#(if(X1, X2, X3))mark#(X1)
div#(active(X1), X2)div#(X1, X2)minus#(active(X1), X2)minus#(X1, X2)
mark#(false)active#(false)mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))
mark#(minus(X1, X2))minus#(X1, X2)active#(if(false, X, Y))mark#(Y)
mark#(div(X1, X2))div#(mark(X1), X2)mark#(geq(X1, X2))geq#(X1, X2)
if#(X1, active(X2), X3)if#(X1, X2, X3)active#(div(s(X), s(Y)))minus#(X, Y)
minus#(mark(X1), X2)minus#(X1, X2)div#(X1, mark(X2))div#(X1, X2)
mark#(if(X1, X2, X3))if#(mark(X1), X2, X3)mark#(0)active#(0)
mark#(s(X))active#(s(mark(X)))active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
geq#(X1, active(X2))geq#(X1, X2)mark#(div(X1, X2))active#(div(mark(X1), X2))
if#(active(X1), X2, X3)if#(X1, X2, X3)s#(mark(X))s#(X)
s#(active(X))s#(X)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


The following SCCs where found

minus#(mark(X1), X2) → minus#(X1, X2)minus#(X1, active(X2)) → minus#(X1, X2)
minus#(X1, mark(X2)) → minus#(X1, X2)minus#(active(X1), X2) → minus#(X1, X2)

if#(X1, mark(X2), X3) → if#(X1, X2, X3)if#(X1, X2, mark(X3)) → if#(X1, X2, X3)
if#(mark(X1), X2, X3) → if#(X1, X2, X3)if#(X1, active(X2), X3) → if#(X1, X2, X3)
if#(X1, X2, active(X3)) → if#(X1, X2, X3)if#(active(X1), X2, X3) → if#(X1, X2, X3)

s#(mark(X)) → s#(X)s#(active(X)) → s#(X)

div#(X1, mark(X2)) → div#(X1, X2)div#(X1, active(X2)) → div#(X1, X2)
div#(mark(X1), X2) → div#(X1, X2)div#(active(X1), X2) → div#(X1, X2)

geq#(mark(X1), X2) → geq#(X1, X2)geq#(active(X1), X2) → geq#(X1, X2)
geq#(X1, active(X2)) → geq#(X1, X2)geq#(X1, mark(X2)) → geq#(X1, X2)

mark#(if(X1, X2, X3)) → active#(if(mark(X1), X2, X3))mark#(s(X)) → active#(s(mark(X)))
active#(div(s(X), s(Y))) → mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active#(if(false, X, Y)) → mark#(Y)
mark#(geq(X1, X2)) → active#(geq(X1, X2))active#(geq(s(X), s(Y))) → mark#(geq(X, Y))
mark#(div(X1, X2)) → active#(div(mark(X1), X2))active#(if(true, X, Y)) → mark#(X)
mark#(if(X1, X2, X3)) → mark#(X1)mark#(s(X)) → mark#(X)
mark#(minus(X1, X2)) → active#(minus(X1, X2))active#(minus(s(X), s(Y))) → mark#(minus(X, Y))
mark#(div(X1, X2)) → mark#(X1)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

geq#(mark(X1), X2)geq#(X1, X2)geq#(active(X1), X2)geq#(X1, X2)
geq#(X1, active(X2))geq#(X1, X2)geq#(X1, mark(X2))geq#(X1, X2)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

geq#(active(X1), X2)geq#(X1, X2)geq#(mark(X1), X2)geq#(X1, X2)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

geq#(X1, active(X2))geq#(X1, X2)geq#(X1, mark(X2))geq#(X1, X2)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

geq#(X1, active(X2))geq#(X1, X2)geq#(X1, mark(X2))geq#(X1, X2)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

div#(X1, mark(X2))div#(X1, X2)div#(X1, active(X2))div#(X1, X2)
div#(mark(X1), X2)div#(X1, X2)div#(active(X1), X2)div#(X1, X2)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

div#(mark(X1), X2)div#(X1, X2)div#(active(X1), X2)div#(X1, X2)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

div#(X1, mark(X2))div#(X1, X2)div#(X1, active(X2))div#(X1, X2)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

div#(X1, mark(X2))div#(X1, X2)div#(X1, active(X2))div#(X1, X2)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

if#(X1, mark(X2), X3)if#(X1, X2, X3)if#(X1, X2, mark(X3))if#(X1, X2, X3)
if#(mark(X1), X2, X3)if#(X1, X2, X3)if#(X1, active(X2), X3)if#(X1, X2, X3)
if#(X1, X2, active(X3))if#(X1, X2, X3)if#(active(X1), X2, X3)if#(X1, X2, X3)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

if#(mark(X1), X2, X3)if#(X1, X2, X3)if#(active(X1), X2, X3)if#(X1, X2, X3)

Problem 10: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

if#(X1, mark(X2), X3)if#(X1, X2, X3)if#(X1, X2, mark(X3))if#(X1, X2, X3)
if#(X1, active(X2), X3)if#(X1, X2, X3)if#(X1, X2, active(X3))if#(X1, X2, X3)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

if#(X1, mark(X2), X3)if#(X1, X2, X3)if#(X1, active(X2), X3)if#(X1, X2, X3)

Problem 12: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

if#(X1, X2, mark(X3))if#(X1, X2, X3)if#(X1, X2, active(X3))if#(X1, X2, X3)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

if#(X1, X2, active(X3))if#(X1, X2, X3)

Problem 14: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

if#(X1, X2, mark(X3))if#(X1, X2, X3)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

if#(X1, X2, mark(X3))if#(X1, X2, X3)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

minus#(mark(X1), X2)minus#(X1, X2)minus#(X1, active(X2))minus#(X1, X2)
minus#(X1, mark(X2))minus#(X1, X2)minus#(active(X1), X2)minus#(X1, X2)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

minus#(mark(X1), X2)minus#(X1, X2)minus#(active(X1), X2)minus#(X1, X2)

Problem 11: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

minus#(X1, active(X2))minus#(X1, X2)minus#(X1, mark(X2))minus#(X1, X2)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

minus#(X1, active(X2))minus#(X1, X2)minus#(X1, mark(X2))minus#(X1, X2)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(active(X))s#(X)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(active(X))s#(X)

Problem 7: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(s(X))active#(s(mark(X)))mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))
active#(if(false, X, Y))mark#(Y)active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
mark#(geq(X1, X2))active#(geq(X1, X2))active#(geq(s(X), s(Y)))mark#(geq(X, Y))
mark#(div(X1, X2))active#(div(mark(X1), X2))active#(if(true, X, Y))mark#(X)
mark#(if(X1, X2, X3))mark#(X1)mark#(s(X))mark#(X)
mark#(minus(X1, X2))active#(minus(X1, X2))active#(minus(s(X), s(Y)))mark#(minus(X, Y))
mark#(div(X1, X2))mark#(X1)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Polynomial Interpretation

Standard Usable rules

mark(minus(X1, X2))active(minus(X1, X2))minus(X1, active(X2))minus(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(active(X1), X2)div(X1, X2)
mark(s(X))active(s(mark(X)))div(X1, mark(X2))div(X1, X2)
active(div(0, s(Y)))mark(0)mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
minus(mark(X1), X2)minus(X1, X2)active(minus(0, Y))mark(0)
if(active(X1), X2, X3)if(X1, X2, X3)minus(X1, mark(X2))minus(X1, X2)
geq(mark(X1), X2)geq(X1, X2)mark(true)active(true)
if(X1, X2, active(X3))if(X1, X2, X3)div(X1, active(X2))div(X1, X2)
if(X1, X2, mark(X3))if(X1, X2, X3)active(minus(s(X), s(Y)))mark(minus(X, Y))
mark(0)active(0)s(active(X))s(X)
active(geq(X, 0))mark(true)minus(active(X1), X2)minus(X1, X2)
if(X1, active(X2), X3)if(X1, X2, X3)div(mark(X1), X2)div(X1, X2)
if(mark(X1), X2, X3)if(X1, X2, X3)active(geq(0, s(Y)))mark(false)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
mark(div(X1, X2))active(div(mark(X1), X2))active(if(false, X, Y))mark(Y)
mark(geq(X1, X2))active(geq(X1, X2))active(geq(s(X), s(Y)))mark(geq(X, Y))
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))if(X1, mark(X2), X3)if(X1, X2, X3)
mark(false)active(false)s(mark(X))s(X)
active(if(true, X, Y))mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(s(X))active#(s(mark(X)))

Problem 13: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active#(if(false, X, Y))mark#(Y)mark#(geq(X1, X2))active#(geq(X1, X2))
active#(geq(s(X), s(Y)))mark#(geq(X, Y))mark#(if(X1, X2, X3))mark#(X1)
mark#(s(X))mark#(X)mark#(minus(X1, X2))active#(minus(X1, X2))
mark#(div(X1, X2))active#(div(mark(X1), X2))active#(minus(s(X), s(Y)))mark#(minus(X, Y))
mark#(div(X1, X2))mark#(X1)active#(if(true, X, Y))mark#(X)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


Polynomial Interpretation

Standard Usable rules

mark(minus(X1, X2))active(minus(X1, X2))minus(X1, active(X2))minus(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(active(X1), X2)div(X1, X2)
mark(s(X))active(s(mark(X)))div(X1, mark(X2))div(X1, X2)
active(div(0, s(Y)))mark(0)mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
minus(mark(X1), X2)minus(X1, X2)active(minus(0, Y))mark(0)
if(active(X1), X2, X3)if(X1, X2, X3)minus(X1, mark(X2))minus(X1, X2)
geq(mark(X1), X2)geq(X1, X2)mark(true)active(true)
if(X1, X2, active(X3))if(X1, X2, X3)div(X1, active(X2))div(X1, X2)
if(X1, X2, mark(X3))if(X1, X2, X3)active(minus(s(X), s(Y)))mark(minus(X, Y))
mark(0)active(0)s(active(X))s(X)
active(geq(X, 0))mark(true)minus(active(X1), X2)minus(X1, X2)
if(X1, active(X2), X3)if(X1, X2, X3)div(mark(X1), X2)div(X1, X2)
if(mark(X1), X2, X3)if(X1, X2, X3)active(geq(0, s(Y)))mark(false)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
mark(div(X1, X2))active(div(mark(X1), X2))active(if(false, X, Y))mark(Y)
mark(geq(X1, X2))active(geq(X1, X2))active(geq(s(X), s(Y)))mark(geq(X, Y))
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))if(X1, mark(X2), X3)if(X1, X2, X3)
mark(false)active(false)s(mark(X))s(X)
active(if(true, X, Y))mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(div(X1, X2))mark#(X1)

Problem 15: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))active#(if(false, X, Y))mark#(Y)
active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))mark#(geq(X1, X2))active#(geq(X1, X2))
active#(geq(s(X), s(Y)))mark#(geq(X, Y))mark#(if(X1, X2, X3))mark#(X1)
mark#(s(X))mark#(X)mark#(div(X1, X2))active#(div(mark(X1), X2))
mark#(minus(X1, X2))active#(minus(X1, X2))active#(minus(s(X), s(Y)))mark#(minus(X, Y))
active#(if(true, X, Y))mark#(X)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Polynomial Interpretation

Standard Usable rules

mark(minus(X1, X2))active(minus(X1, X2))minus(X1, active(X2))minus(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(active(X1), X2)div(X1, X2)
mark(s(X))active(s(mark(X)))div(X1, mark(X2))div(X1, X2)
active(div(0, s(Y)))mark(0)mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
minus(mark(X1), X2)minus(X1, X2)active(minus(0, Y))mark(0)
if(active(X1), X2, X3)if(X1, X2, X3)minus(X1, mark(X2))minus(X1, X2)
geq(mark(X1), X2)geq(X1, X2)mark(true)active(true)
if(X1, X2, active(X3))if(X1, X2, X3)div(X1, active(X2))div(X1, X2)
if(X1, X2, mark(X3))if(X1, X2, X3)active(minus(s(X), s(Y)))mark(minus(X, Y))
mark(0)active(0)s(active(X))s(X)
active(geq(X, 0))mark(true)minus(active(X1), X2)minus(X1, X2)
if(X1, active(X2), X3)if(X1, X2, X3)div(mark(X1), X2)div(X1, X2)
if(mark(X1), X2, X3)if(X1, X2, X3)active(geq(0, s(Y)))mark(false)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
mark(div(X1, X2))active(div(mark(X1), X2))active(if(false, X, Y))mark(Y)
mark(geq(X1, X2))active(geq(X1, X2))active(geq(s(X), s(Y)))mark(geq(X, Y))
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))if(X1, mark(X2), X3)if(X1, X2, X3)
mark(false)active(false)s(mark(X))s(X)
active(if(true, X, Y))mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(s(X))mark#(X)active#(minus(s(X), s(Y)))mark#(minus(X, Y))

Problem 16: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active#(if(false, X, Y))mark#(Y)mark#(geq(X1, X2))active#(geq(X1, X2))
active#(geq(s(X), s(Y)))mark#(geq(X, Y))mark#(if(X1, X2, X3))mark#(X1)
mark#(minus(X1, X2))active#(minus(X1, X2))mark#(div(X1, X2))active#(div(mark(X1), X2))
active#(if(true, X, Y))mark#(X)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


Polynomial Interpretation

Standard Usable rules

mark(minus(X1, X2))active(minus(X1, X2))minus(X1, active(X2))minus(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(active(X1), X2)div(X1, X2)
mark(s(X))active(s(mark(X)))div(X1, mark(X2))div(X1, X2)
active(div(0, s(Y)))mark(0)mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
minus(mark(X1), X2)minus(X1, X2)active(minus(0, Y))mark(0)
if(active(X1), X2, X3)if(X1, X2, X3)minus(X1, mark(X2))minus(X1, X2)
geq(mark(X1), X2)geq(X1, X2)mark(true)active(true)
if(X1, X2, active(X3))if(X1, X2, X3)div(X1, active(X2))div(X1, X2)
if(X1, X2, mark(X3))if(X1, X2, X3)active(minus(s(X), s(Y)))mark(minus(X, Y))
mark(0)active(0)s(active(X))s(X)
active(geq(X, 0))mark(true)minus(active(X1), X2)minus(X1, X2)
if(X1, active(X2), X3)if(X1, X2, X3)div(mark(X1), X2)div(X1, X2)
if(mark(X1), X2, X3)if(X1, X2, X3)active(geq(0, s(Y)))mark(false)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
mark(div(X1, X2))active(div(mark(X1), X2))active(if(false, X, Y))mark(Y)
mark(geq(X1, X2))active(geq(X1, X2))active(geq(s(X), s(Y)))mark(geq(X, Y))
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))if(X1, mark(X2), X3)if(X1, X2, X3)
mark(false)active(false)s(mark(X))s(X)
active(if(true, X, Y))mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(minus(X1, X2))active#(minus(X1, X2))

Problem 17: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))active#(if(false, X, Y))mark#(Y)
active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))mark#(geq(X1, X2))active#(geq(X1, X2))
active#(geq(s(X), s(Y)))mark#(geq(X, Y))mark#(if(X1, X2, X3))mark#(X1)
mark#(div(X1, X2))active#(div(mark(X1), X2))active#(if(true, X, Y))mark#(X)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Polynomial Interpretation

Standard Usable rules

mark(minus(X1, X2))active(minus(X1, X2))minus(X1, active(X2))minus(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(active(X1), X2)div(X1, X2)
mark(s(X))active(s(mark(X)))div(X1, mark(X2))div(X1, X2)
active(div(0, s(Y)))mark(0)mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
minus(mark(X1), X2)minus(X1, X2)active(minus(0, Y))mark(0)
if(active(X1), X2, X3)if(X1, X2, X3)minus(X1, mark(X2))minus(X1, X2)
geq(mark(X1), X2)geq(X1, X2)mark(true)active(true)
if(X1, X2, active(X3))if(X1, X2, X3)div(X1, active(X2))div(X1, X2)
if(X1, X2, mark(X3))if(X1, X2, X3)active(minus(s(X), s(Y)))mark(minus(X, Y))
mark(0)active(0)s(active(X))s(X)
active(geq(X, 0))mark(true)minus(active(X1), X2)minus(X1, X2)
if(X1, active(X2), X3)if(X1, X2, X3)div(mark(X1), X2)div(X1, X2)
if(mark(X1), X2, X3)if(X1, X2, X3)active(geq(0, s(Y)))mark(false)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
mark(div(X1, X2))active(div(mark(X1), X2))active(if(false, X, Y))mark(Y)
mark(geq(X1, X2))active(geq(X1, X2))active(geq(s(X), s(Y)))mark(geq(X, Y))
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))if(X1, mark(X2), X3)if(X1, X2, X3)
mark(false)active(false)s(mark(X))s(X)
active(if(true, X, Y))mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

active#(if(true, X, Y))mark#(X)

Problem 18: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
active#(if(false, X, Y))mark#(Y)mark#(geq(X1, X2))active#(geq(X1, X2))
active#(geq(s(X), s(Y)))mark#(geq(X, Y))mark#(if(X1, X2, X3))mark#(X1)
mark#(div(X1, X2))active#(div(mark(X1), X2))

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


Polynomial Interpretation

Standard Usable rules

mark(minus(X1, X2))active(minus(X1, X2))minus(X1, active(X2))minus(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(active(X1), X2)div(X1, X2)
mark(s(X))active(s(mark(X)))div(X1, mark(X2))div(X1, X2)
active(div(0, s(Y)))mark(0)mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
minus(mark(X1), X2)minus(X1, X2)active(minus(0, Y))mark(0)
if(active(X1), X2, X3)if(X1, X2, X3)minus(X1, mark(X2))minus(X1, X2)
geq(mark(X1), X2)geq(X1, X2)mark(true)active(true)
if(X1, X2, active(X3))if(X1, X2, X3)div(X1, active(X2))div(X1, X2)
if(X1, X2, mark(X3))if(X1, X2, X3)active(minus(s(X), s(Y)))mark(minus(X, Y))
mark(0)active(0)s(active(X))s(X)
active(geq(X, 0))mark(true)minus(active(X1), X2)minus(X1, X2)
if(X1, active(X2), X3)if(X1, X2, X3)div(mark(X1), X2)div(X1, X2)
if(mark(X1), X2, X3)if(X1, X2, X3)active(geq(0, s(Y)))mark(false)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
mark(div(X1, X2))active(div(mark(X1), X2))active(if(false, X, Y))mark(Y)
mark(geq(X1, X2))active(geq(X1, X2))active(geq(s(X), s(Y)))mark(geq(X, Y))
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))if(X1, mark(X2), X3)if(X1, X2, X3)
mark(false)active(false)s(mark(X))s(X)
active(if(true, X, Y))mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

active#(if(false, X, Y))mark#(Y)

Problem 19: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
mark#(geq(X1, X2))active#(geq(X1, X2))active#(geq(s(X), s(Y)))mark#(geq(X, Y))
mark#(if(X1, X2, X3))mark#(X1)mark#(div(X1, X2))active#(div(mark(X1), X2))

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Polynomial Interpretation

Standard Usable rules

mark(minus(X1, X2))active(minus(X1, X2))minus(X1, active(X2))minus(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(active(X1), X2)div(X1, X2)
mark(s(X))active(s(mark(X)))div(X1, mark(X2))div(X1, X2)
active(div(0, s(Y)))mark(0)mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
minus(mark(X1), X2)minus(X1, X2)active(minus(0, Y))mark(0)
if(active(X1), X2, X3)if(X1, X2, X3)minus(X1, mark(X2))minus(X1, X2)
geq(mark(X1), X2)geq(X1, X2)mark(true)active(true)
if(X1, X2, active(X3))if(X1, X2, X3)div(X1, active(X2))div(X1, X2)
if(X1, X2, mark(X3))if(X1, X2, X3)active(minus(s(X), s(Y)))mark(minus(X, Y))
mark(0)active(0)s(active(X))s(X)
active(geq(X, 0))mark(true)minus(active(X1), X2)minus(X1, X2)
if(X1, active(X2), X3)if(X1, X2, X3)div(mark(X1), X2)div(X1, X2)
if(mark(X1), X2, X3)if(X1, X2, X3)active(geq(0, s(Y)))mark(false)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
mark(div(X1, X2))active(div(mark(X1), X2))active(if(false, X, Y))mark(Y)
mark(geq(X1, X2))active(geq(X1, X2))active(geq(s(X), s(Y)))mark(geq(X, Y))
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))if(X1, mark(X2), X3)if(X1, X2, X3)
mark(false)active(false)s(mark(X))s(X)
active(if(true, X, Y))mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))

Problem 20: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))mark#(geq(X1, X2))active#(geq(X1, X2))
active#(geq(s(X), s(Y)))mark#(geq(X, Y))mark#(if(X1, X2, X3))mark#(X1)
mark#(div(X1, X2))active#(div(mark(X1), X2))

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


Polynomial Interpretation

Standard Usable rules

mark(minus(X1, X2))active(minus(X1, X2))minus(X1, active(X2))minus(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(active(X1), X2)div(X1, X2)
mark(s(X))active(s(mark(X)))div(X1, mark(X2))div(X1, X2)
active(div(0, s(Y)))mark(0)mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
minus(mark(X1), X2)minus(X1, X2)active(minus(0, Y))mark(0)
if(active(X1), X2, X3)if(X1, X2, X3)minus(X1, mark(X2))minus(X1, X2)
geq(mark(X1), X2)geq(X1, X2)mark(true)active(true)
if(X1, X2, active(X3))if(X1, X2, X3)div(X1, active(X2))div(X1, X2)
if(X1, X2, mark(X3))if(X1, X2, X3)active(minus(s(X), s(Y)))mark(minus(X, Y))
mark(0)active(0)s(active(X))s(X)
active(geq(X, 0))mark(true)minus(active(X1), X2)minus(X1, X2)
if(X1, active(X2), X3)if(X1, X2, X3)div(mark(X1), X2)div(X1, X2)
if(mark(X1), X2, X3)if(X1, X2, X3)active(geq(0, s(Y)))mark(false)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
mark(div(X1, X2))active(div(mark(X1), X2))active(if(false, X, Y))mark(Y)
mark(geq(X1, X2))active(geq(X1, X2))active(geq(s(X), s(Y)))mark(geq(X, Y))
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))if(X1, mark(X2), X3)if(X1, X2, X3)
mark(false)active(false)s(mark(X))s(X)
active(if(true, X, Y))mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(div(X1, X2))active#(div(mark(X1), X2))

Problem 21: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))mark#(geq(X1, X2))active#(geq(X1, X2))
active#(geq(s(X), s(Y)))mark#(geq(X, Y))mark#(if(X1, X2, X3))mark#(X1)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Polynomial Interpretation

Standard Usable rules

if(X1, active(X2), X3)if(X1, X2, X3)minus(X1, active(X2))minus(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(active(X1), X2)div(X1, X2)
if(mark(X1), X2, X3)if(X1, X2, X3)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)geq(X1, mark(X2))geq(X1, X2)
geq(active(X1), X2)geq(X1, X2)minus(mark(X1), X2)minus(X1, X2)
if(active(X1), X2, X3)if(X1, X2, X3)minus(X1, mark(X2))minus(X1, X2)
geq(mark(X1), X2)geq(X1, X2)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)div(X1, active(X2))div(X1, X2)
if(X1, X2, mark(X3))if(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)minus(active(X1), X2)minus(X1, X2)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

active#(div(s(X), s(Y)))mark#(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))

Problem 22: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(geq(X1, X2))active#(geq(X1, X2))active#(geq(s(X), s(Y)))mark#(geq(X, Y))
mark#(if(X1, X2, X3))mark#(X1)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


Polynomial Interpretation

Standard Usable rules

geq(X1, active(X2))geq(X1, X2)geq(X1, mark(X2))geq(X1, X2)
geq(active(X1), X2)geq(X1, X2)geq(mark(X1), X2)geq(X1, X2)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(if(X1, X2, X3))mark#(X1)

Problem 23: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(geq(X1, X2))active#(geq(X1, X2))active#(geq(s(X), s(Y)))mark#(geq(X, Y))

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, 0, minus, s, if, div, active, true, false, mark

Strategy


Function Precedence

active = mark < active# < geq = minus = 0 = s = if = div = false = true = mark#

Argument Filtering

geq: collapses to 2
minus: all arguments are removed from minus
0: all arguments are removed from 0
s: 1
if: all arguments are removed from if
div: all arguments are removed from div
false: all arguments are removed from false
true: all arguments are removed from true
active: collapses to 1
mark: 1
active#: collapses to 1
mark#: 1

Status

minus: multiset
0: multiset
s: lexicographic with permutation 1 → 1
if: multiset
div: multiset
false: multiset
true: multiset
mark: multiset
mark#: lexicographic with permutation 1 → 1

Usable Rules

geq(X1, active(X2)) → geq(X1, X2)geq(X1, mark(X2)) → geq(X1, X2)
geq(active(X1), X2) → geq(X1, X2)geq(mark(X1), X2) → geq(X1, X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(geq(X1, X2)) → active#(geq(X1, X2))

Problem 24: DependencyGraph



Dependency Pair Problem

Dependency Pairs

active#(geq(s(X), s(Y)))mark#(geq(X, Y))

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)mark(minus(X1, X2))active(minus(X1, X2))
mark(0)active(0)mark(s(X))active(s(mark(X)))
mark(geq(X1, X2))active(geq(X1, X2))mark(true)active(true)
mark(false)active(false)mark(div(X1, X2))active(div(mark(X1), X2))
mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))minus(mark(X1), X2)minus(X1, X2)
minus(X1, mark(X2))minus(X1, X2)minus(active(X1), X2)minus(X1, X2)
minus(X1, active(X2))minus(X1, X2)s(mark(X))s(X)
s(active(X))s(X)geq(mark(X1), X2)geq(X1, X2)
geq(X1, mark(X2))geq(X1, X2)geq(active(X1), X2)geq(X1, X2)
geq(X1, active(X2))geq(X1, X2)div(mark(X1), X2)div(X1, X2)
div(X1, mark(X2))div(X1, X2)div(active(X1), X2)div(X1, X2)
div(X1, active(X2))div(X1, X2)if(mark(X1), X2, X3)if(X1, X2, X3)
if(X1, mark(X2), X3)if(X1, X2, X3)if(X1, X2, mark(X3))if(X1, X2, X3)
if(active(X1), X2, X3)if(X1, X2, X3)if(X1, active(X2), X3)if(X1, X2, X3)
if(X1, X2, active(X3))if(X1, X2, X3)

Original Signature

Termination of terms over the following signature is verified: geq, minus, 0, s, if, div, false, true, active, mark

Strategy


There are no SCCs!