YES

The TRS could be proven terminating. The proof took 44997 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (433ms).
 | – Problem 2 was processed with processor SubtermCriterion (6ms).
 | – Problem 3 was processed with processor ReductionPairSAT (8543ms).
 |    | – Problem 10 was processed with processor ReductionPairSAT (3337ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor SubtermCriterion (0ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 9 was processed with processor SubtermCriterion (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

minus#(ok(X1), ok(X2))minus#(X1, X2)top#(ok(X))top#(active(X))
proper#(geq(X1, X2))geq#(proper(X1), proper(X2))proper#(minus(X1, X2))proper#(X1)
geq#(ok(X1), ok(X2))geq#(X1, X2)proper#(div(X1, X2))div#(proper(X1), proper(X2))
top#(ok(X))active#(X)active#(div(s(X), s(Y)))minus#(X, Y)
active#(if(X1, X2, X3))active#(X1)active#(div(s(X), s(Y)))geq#(X, Y)
active#(div(X1, X2))div#(active(X1), X2)active#(div(s(X), s(Y)))div#(minus(X, Y), s(Y))
proper#(geq(X1, X2))proper#(X1)proper#(minus(X1, X2))proper#(X2)
if#(ok(X1), ok(X2), ok(X3))if#(X1, X2, X3)top#(mark(X))proper#(X)
active#(div(s(X), s(Y)))s#(div(minus(X, Y), s(Y)))top#(mark(X))top#(proper(X))
proper#(if(X1, X2, X3))proper#(X1)proper#(if(X1, X2, X3))proper#(X2)
active#(div(s(X), s(Y)))s#(Y)active#(s(X))s#(active(X))
s#(ok(X))s#(X)active#(geq(s(X), s(Y)))geq#(X, Y)
s#(mark(X))s#(X)proper#(s(X))proper#(X)
proper#(geq(X1, X2))proper#(X2)active#(minus(s(X), s(Y)))minus#(X, Y)
proper#(minus(X1, X2))minus#(proper(X1), proper(X2))active#(div(s(X), s(Y)))if#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
active#(s(X))active#(X)proper#(s(X))s#(proper(X))
proper#(if(X1, X2, X3))proper#(X3)div#(ok(X1), ok(X2))div#(X1, X2)
active#(div(X1, X2))active#(X1)if#(mark(X1), X2, X3)if#(X1, X2, X3)
div#(mark(X1), X2)div#(X1, X2)proper#(div(X1, X2))proper#(X1)
active#(if(X1, X2, X3))if#(active(X1), X2, X3)proper#(div(X1, X2))proper#(X2)
proper#(if(X1, X2, X3))if#(proper(X1), proper(X2), proper(X3))

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(s(X))s(active(X))
active(div(X1, X2))div(active(X1), X2)active(if(X1, X2, X3))if(active(X1), X2, X3)
s(mark(X))mark(s(X))div(mark(X1), X2)mark(div(X1, X2))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))proper(minus(X1, X2))minus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(geq(X1, X2))geq(proper(X1), proper(X2))proper(true)ok(true)
proper(false)ok(false)proper(div(X1, X2))div(proper(X1), proper(X2))
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))minus(ok(X1), ok(X2))ok(minus(X1, X2))
s(ok(X))ok(s(X))geq(ok(X1), ok(X2))ok(geq(X1, X2))
div(ok(X1), ok(X2))ok(div(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: geq, minus, div, true, mark, 0, s, if, active, false, ok, proper, top

Strategy


The following SCCs where found

active#(if(X1, X2, X3)) → active#(X1)active#(s(X)) → active#(X)
active#(div(X1, X2)) → active#(X1)

minus#(ok(X1), ok(X2)) → minus#(X1, X2)

div#(ok(X1), ok(X2)) → div#(X1, X2)div#(mark(X1), X2) → div#(X1, X2)

if#(mark(X1), X2, X3) → if#(X1, X2, X3)if#(ok(X1), ok(X2), ok(X3)) → if#(X1, X2, X3)

geq#(ok(X1), ok(X2)) → geq#(X1, X2)

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

proper#(s(X)) → proper#(X)proper#(geq(X1, X2)) → proper#(X2)
proper#(if(X1, X2, X3)) → proper#(X1)proper#(if(X1, X2, X3)) → proper#(X2)
proper#(if(X1, X2, X3)) → proper#(X3)proper#(div(X1, X2)) → proper#(X1)
proper#(minus(X1, X2)) → proper#(X1)proper#(geq(X1, X2)) → proper#(X1)
proper#(minus(X1, X2)) → proper#(X2)proper#(div(X1, X2)) → proper#(X2)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

div#(ok(X1), ok(X2))div#(X1, X2)div#(mark(X1), X2)div#(X1, X2)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(s(X))s(active(X))
active(div(X1, X2))div(active(X1), X2)active(if(X1, X2, X3))if(active(X1), X2, X3)
s(mark(X))mark(s(X))div(mark(X1), X2)mark(div(X1, X2))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))proper(minus(X1, X2))minus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(geq(X1, X2))geq(proper(X1), proper(X2))proper(true)ok(true)
proper(false)ok(false)proper(div(X1, X2))div(proper(X1), proper(X2))
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))minus(ok(X1), ok(X2))ok(minus(X1, X2))
s(ok(X))ok(s(X))geq(ok(X1), ok(X2))ok(geq(X1, X2))
div(ok(X1), ok(X2))ok(div(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: geq, minus, div, true, mark, 0, s, if, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

div#(ok(X1), ok(X2))div#(X1, X2)div#(mark(X1), X2)div#(X1, X2)

Problem 3: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(s(X))s(active(X))
active(div(X1, X2))div(active(X1), X2)active(if(X1, X2, X3))if(active(X1), X2, X3)
s(mark(X))mark(s(X))div(mark(X1), X2)mark(div(X1, X2))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))proper(minus(X1, X2))minus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(geq(X1, X2))geq(proper(X1), proper(X2))proper(true)ok(true)
proper(false)ok(false)proper(div(X1, X2))div(proper(X1), proper(X2))
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))minus(ok(X1), ok(X2))ok(minus(X1, X2))
s(ok(X))ok(s(X))geq(ok(X1), ok(X2))ok(geq(X1, X2))
div(ok(X1), ok(X2))ok(div(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: geq, minus, div, true, mark, 0, s, if, active, false, ok, proper, top

Strategy


Function Precedence

active < div < 0 < geq < s = if = false < minus = true = mark = ok = proper = top = top#

Argument Filtering

geq: 1 2
minus: 1
div: 1 2
true: all arguments are removed from true
mark: 1
0: all arguments are removed from 0
s: 1
if: 1 2 3
false: all arguments are removed from false
active: collapses to 1
ok: collapses to 1
proper: collapses to 1
top: collapses to 1
top#: 1

Status

geq: lexicographic with permutation 1 → 1 2 → 2
minus: multiset
div: lexicographic with permutation 1 → 2 2 → 1
true: multiset
mark: multiset
0: multiset
s: lexicographic with permutation 1 → 1
if: lexicographic with permutation 1 → 1 2 → 3 3 → 2
false: multiset
top#: multiset

Usable Rules

proper(false) → ok(false)proper(div(X1, X2)) → div(proper(X1), proper(X2))
active(s(X)) → s(active(X))active(div(0, s(Y))) → mark(0)
active(if(X1, X2, X3)) → if(active(X1), X2, X3)active(minus(0, Y)) → mark(0)
s(mark(X)) → mark(s(X))proper(s(X)) → s(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))geq(ok(X1), ok(X2)) → ok(geq(X1, X2))
proper(geq(X1, X2)) → geq(proper(X1), proper(X2))proper(minus(X1, X2)) → minus(proper(X1), proper(X2))
active(minus(s(X), s(Y))) → mark(minus(X, Y))if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
active(geq(X, 0)) → mark(true)if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
active(geq(0, s(Y))) → mark(false)s(ok(X)) → ok(s(X))
active(div(X1, X2)) → div(active(X1), X2)active(if(false, X, Y)) → mark(Y)
proper(true) → ok(true)div(mark(X1), X2) → mark(div(X1, X2))
active(geq(s(X), s(Y))) → mark(geq(X, Y))active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
div(ok(X1), ok(X2)) → ok(div(X1, X2))proper(0) → ok(0)
active(if(true, X, Y)) → mark(X)minus(ok(X1), ok(X2)) → ok(minus(X1, X2))

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

top#(mark(X)) → top#(proper(X))

Problem 10: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

top#(ok(X))top#(active(X))

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(s(X))s(active(X))
active(div(X1, X2))div(active(X1), X2)active(if(X1, X2, X3))if(active(X1), X2, X3)
s(mark(X))mark(s(X))div(mark(X1), X2)mark(div(X1, X2))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))proper(minus(X1, X2))minus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(geq(X1, X2))geq(proper(X1), proper(X2))proper(true)ok(true)
proper(false)ok(false)proper(div(X1, X2))div(proper(X1), proper(X2))
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))minus(ok(X1), ok(X2))ok(minus(X1, X2))
s(ok(X))ok(s(X))geq(ok(X1), ok(X2))ok(geq(X1, X2))
div(ok(X1), ok(X2))ok(div(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: geq, minus, div, true, mark, 0, s, if, active, false, ok, proper, top

Strategy


Function Precedence

false < geq = if < true = s < 0 < active = top# < minus = div = mark = ok = proper = top

Argument Filtering

geq: 1 2
minus: 2
div: 2
true: all arguments are removed from true
mark: all arguments are removed from mark
0: all arguments are removed from 0
s: collapses to 1
if: collapses to 1
false: all arguments are removed from false
active: collapses to 1
ok: 1
proper: all arguments are removed from proper
top: 1
top#: 1

Status

geq: lexicographic with permutation 1 → 2 2 → 1
minus: lexicographic with permutation 2 → 1
div: lexicographic with permutation 2 → 1
true: multiset
mark: multiset
0: multiset
false: multiset
ok: lexicographic with permutation 1 → 1
proper: multiset
top: lexicographic with permutation 1 → 1
top#: lexicographic with permutation 1 → 1

Usable Rules

if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))active(s(X)) → s(active(X))
active(geq(0, s(Y))) → mark(false)s(ok(X)) → ok(s(X))
active(div(0, s(Y))) → mark(0)active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(minus(0, Y)) → mark(0)active(if(false, X, Y)) → mark(Y)
active(div(X1, X2)) → div(active(X1), X2)div(mark(X1), X2) → mark(div(X1, X2))
active(geq(s(X), s(Y))) → mark(geq(X, Y))active(div(s(X), s(Y))) → mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))
s(mark(X)) → mark(s(X))geq(ok(X1), ok(X2)) → ok(geq(X1, X2))
div(ok(X1), ok(X2)) → ok(div(X1, X2))active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(if(true, X, Y)) → mark(X)if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
minus(ok(X1), ok(X2)) → ok(minus(X1, X2))active(geq(X, 0)) → mark(true)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

top#(ok(X)) → top#(active(X))

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(if(X1, X2, X3))active#(X1)active#(s(X))active#(X)
active#(div(X1, X2))active#(X1)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(s(X))s(active(X))
active(div(X1, X2))div(active(X1), X2)active(if(X1, X2, X3))if(active(X1), X2, X3)
s(mark(X))mark(s(X))div(mark(X1), X2)mark(div(X1, X2))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))proper(minus(X1, X2))minus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(geq(X1, X2))geq(proper(X1), proper(X2))proper(true)ok(true)
proper(false)ok(false)proper(div(X1, X2))div(proper(X1), proper(X2))
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))minus(ok(X1), ok(X2))ok(minus(X1, X2))
s(ok(X))ok(s(X))geq(ok(X1), ok(X2))ok(geq(X1, X2))
div(ok(X1), ok(X2))ok(div(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: geq, minus, div, true, mark, 0, s, if, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(if(X1, X2, X3))active#(X1)active#(s(X))active#(X)
active#(div(X1, X2))active#(X1)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(s(X))proper#(X)proper#(geq(X1, X2))proper#(X2)
proper#(if(X1, X2, X3))proper#(X1)proper#(if(X1, X2, X3))proper#(X2)
proper#(if(X1, X2, X3))proper#(X3)proper#(div(X1, X2))proper#(X1)
proper#(minus(X1, X2))proper#(X1)proper#(geq(X1, X2))proper#(X1)
proper#(minus(X1, X2))proper#(X2)proper#(div(X1, X2))proper#(X2)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(s(X))s(active(X))
active(div(X1, X2))div(active(X1), X2)active(if(X1, X2, X3))if(active(X1), X2, X3)
s(mark(X))mark(s(X))div(mark(X1), X2)mark(div(X1, X2))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))proper(minus(X1, X2))minus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(geq(X1, X2))geq(proper(X1), proper(X2))proper(true)ok(true)
proper(false)ok(false)proper(div(X1, X2))div(proper(X1), proper(X2))
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))minus(ok(X1), ok(X2))ok(minus(X1, X2))
s(ok(X))ok(s(X))geq(ok(X1), ok(X2))ok(geq(X1, X2))
div(ok(X1), ok(X2))ok(div(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: geq, minus, div, true, mark, 0, s, if, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(s(X))proper#(X)proper#(geq(X1, X2))proper#(X2)
proper#(if(X1, X2, X3))proper#(X1)proper#(if(X1, X2, X3))proper#(X2)
proper#(if(X1, X2, X3))proper#(X3)proper#(div(X1, X2))proper#(X1)
proper#(geq(X1, X2))proper#(X1)proper#(minus(X1, X2))proper#(X1)
proper#(minus(X1, X2))proper#(X2)proper#(div(X1, X2))proper#(X2)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

geq#(ok(X1), ok(X2))geq#(X1, X2)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(s(X))s(active(X))
active(div(X1, X2))div(active(X1), X2)active(if(X1, X2, X3))if(active(X1), X2, X3)
s(mark(X))mark(s(X))div(mark(X1), X2)mark(div(X1, X2))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))proper(minus(X1, X2))minus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(geq(X1, X2))geq(proper(X1), proper(X2))proper(true)ok(true)
proper(false)ok(false)proper(div(X1, X2))div(proper(X1), proper(X2))
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))minus(ok(X1), ok(X2))ok(minus(X1, X2))
s(ok(X))ok(s(X))geq(ok(X1), ok(X2))ok(geq(X1, X2))
div(ok(X1), ok(X2))ok(div(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: geq, minus, div, true, mark, 0, s, if, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

geq#(ok(X1), ok(X2))geq#(X1, X2)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(s(X))s(active(X))
active(div(X1, X2))div(active(X1), X2)active(if(X1, X2, X3))if(active(X1), X2, X3)
s(mark(X))mark(s(X))div(mark(X1), X2)mark(div(X1, X2))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))proper(minus(X1, X2))minus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(geq(X1, X2))geq(proper(X1), proper(X2))proper(true)ok(true)
proper(false)ok(false)proper(div(X1, X2))div(proper(X1), proper(X2))
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))minus(ok(X1), ok(X2))ok(minus(X1, X2))
s(ok(X))ok(s(X))geq(ok(X1), ok(X2))ok(geq(X1, X2))
div(ok(X1), ok(X2))ok(div(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: geq, minus, div, true, mark, 0, s, if, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

if#(mark(X1), X2, X3)if#(X1, X2, X3)if#(ok(X1), ok(X2), ok(X3))if#(X1, X2, X3)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(s(X))s(active(X))
active(div(X1, X2))div(active(X1), X2)active(if(X1, X2, X3))if(active(X1), X2, X3)
s(mark(X))mark(s(X))div(mark(X1), X2)mark(div(X1, X2))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))proper(minus(X1, X2))minus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(geq(X1, X2))geq(proper(X1), proper(X2))proper(true)ok(true)
proper(false)ok(false)proper(div(X1, X2))div(proper(X1), proper(X2))
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))minus(ok(X1), ok(X2))ok(minus(X1, X2))
s(ok(X))ok(s(X))geq(ok(X1), ok(X2))ok(geq(X1, X2))
div(ok(X1), ok(X2))ok(div(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: geq, minus, div, true, mark, 0, s, if, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

if#(mark(X1), X2, X3)if#(X1, X2, X3)if#(ok(X1), ok(X2), ok(X3))if#(X1, X2, X3)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

minus#(ok(X1), ok(X2))minus#(X1, X2)

Rewrite Rules

active(minus(0, Y))mark(0)active(minus(s(X), s(Y)))mark(minus(X, Y))
active(geq(X, 0))mark(true)active(geq(0, s(Y)))mark(false)
active(geq(s(X), s(Y)))mark(geq(X, Y))active(div(0, s(Y)))mark(0)
active(div(s(X), s(Y)))mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(s(X))s(active(X))
active(div(X1, X2))div(active(X1), X2)active(if(X1, X2, X3))if(active(X1), X2, X3)
s(mark(X))mark(s(X))div(mark(X1), X2)mark(div(X1, X2))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))proper(minus(X1, X2))minus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(geq(X1, X2))geq(proper(X1), proper(X2))proper(true)ok(true)
proper(false)ok(false)proper(div(X1, X2))div(proper(X1), proper(X2))
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))minus(ok(X1), ok(X2))ok(minus(X1, X2))
s(ok(X))ok(s(X))geq(ok(X1), ok(X2))ok(geq(X1, X2))
div(ok(X1), ok(X2))ok(div(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: geq, minus, div, true, mark, 0, s, if, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

minus#(ok(X1), ok(X2))minus#(X1, X2)