TIMEOUT
The TRS could not be proven terminating. The proof attempt took 60000 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (2079ms).
| Problem 2 was processed with processor SubtermCriterion (1ms).
| Problem 3 was processed with processor SubtermCriterion (0ms).
| Problem 4 was processed with processor SubtermCriterion (2ms).
| Problem 5 was processed with processor SubtermCriterion (3ms).
| Problem 6 was processed with processor SubtermCriterion (1ms).
| | Problem 12 was processed with processor ReductionPairSAT (69ms).
| Problem 7 was processed with processor SubtermCriterion (1ms).
| Problem 8 was processed with processor SubtermCriterion (0ms).
| Problem 9 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (7ms), PolynomialLinearRange4iUR (5000ms), DependencyGraph (6ms), PolynomialLinearRange8NegiUR (15000ms), DependencyGraph (13ms), ReductionPairSAT (6326ms), DependencyGraph (22ms), ReductionPairSAT (6216ms), DependencyGraph (4ms), SizeChangePrinciple (timeout)].
| Problem 10 was processed with processor SubtermCriterion (1ms).
| Problem 11 was processed with processor SubtermCriterion (1ms).
The following open problems remain:
Open Dependency Pair Problem 9
Dependency Pairs
top#(mark(X)) | → | top#(proper(X)) | | top#(ok(X)) | → | top#(active(X)) |
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, top, nil, cons
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
proper#(cons(X1, X2)) | → | proper#(X1) | | top#(ok(X)) | → | top#(active(X)) |
dbls#(ok(X)) | → | dbls#(X) | | active#(dbl(s(X))) | → | s#(dbl(X)) |
cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) | | active#(dbls(cons(X, Y))) | → | cons#(dbl(X), dbls(Y)) |
dbls#(mark(X)) | → | dbls#(X) | | from#(ok(X)) | → | from#(X) |
active#(sel(X1, X2)) | → | active#(X2) | | indx#(ok(X1), ok(X2)) | → | indx#(X1, X2) |
active#(dbl(s(X))) | → | dbl#(X) | | top#(mark(X)) | → | proper#(X) |
proper#(indx(X1, X2)) | → | proper#(X1) | | proper#(from(X)) | → | proper#(X) |
indx#(mark(X1), X2) | → | indx#(X1, X2) | | active#(sel(s(X), cons(Y, Z))) | → | sel#(X, Z) |
top#(mark(X)) | → | top#(proper(X)) | | proper#(cons(X1, X2)) | → | proper#(X2) |
active#(dbl(s(X))) | → | s#(s(dbl(X))) | | sel#(X1, mark(X2)) | → | sel#(X1, X2) |
active#(indx(cons(X, Y), Z)) | → | cons#(sel(X, Z), indx(Y, Z)) | | active#(from(X)) | → | s#(X) |
proper#(s(X)) | → | proper#(X) | | sel#(ok(X1), ok(X2)) | → | sel#(X1, X2) |
active#(dbls(X)) | → | active#(X) | | active#(dbls(X)) | → | dbls#(active(X)) |
sel#(mark(X1), X2) | → | sel#(X1, X2) | | active#(dbls(cons(X, Y))) | → | dbls#(Y) |
proper#(indx(X1, X2)) | → | proper#(X2) | | active#(indx(cons(X, Y), Z)) | → | indx#(Y, Z) |
top#(ok(X)) | → | active#(X) | | proper#(sel(X1, X2)) | → | sel#(proper(X1), proper(X2)) |
active#(sel(X1, X2)) | → | active#(X1) | | active#(indx(cons(X, Y), Z)) | → | sel#(X, Z) |
active#(dbl(X)) | → | active#(X) | | active#(from(X)) | → | cons#(X, from(s(X))) |
proper#(from(X)) | → | from#(proper(X)) | | proper#(sel(X1, X2)) | → | proper#(X2) |
active#(dbls(cons(X, Y))) | → | dbl#(X) | | proper#(indx(X1, X2)) | → | indx#(proper(X1), proper(X2)) |
proper#(dbls(X)) | → | dbls#(proper(X)) | | active#(sel(X1, X2)) | → | sel#(X1, active(X2)) |
active#(sel(X1, X2)) | → | sel#(active(X1), X2) | | active#(indx(X1, X2)) | → | active#(X1) |
proper#(dbl(X)) | → | proper#(X) | | dbl#(mark(X)) | → | dbl#(X) |
active#(dbl(X)) | → | dbl#(active(X)) | | s#(ok(X)) | → | s#(X) |
dbl#(ok(X)) | → | dbl#(X) | | proper#(sel(X1, X2)) | → | proper#(X1) |
proper#(cons(X1, X2)) | → | cons#(proper(X1), proper(X2)) | | proper#(dbl(X)) | → | dbl#(proper(X)) |
proper#(dbls(X)) | → | proper#(X) | | proper#(s(X)) | → | s#(proper(X)) |
active#(indx(X1, X2)) | → | indx#(active(X1), X2) | | active#(from(X)) | → | from#(s(X)) |
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, cons, top, nil
Strategy
The following SCCs where found
sel#(mark(X1), X2) → sel#(X1, X2) | sel#(ok(X1), ok(X2)) → sel#(X1, X2) |
sel#(X1, mark(X2)) → sel#(X1, X2) |
proper#(sel(X1, X2)) → proper#(X1) | proper#(s(X)) → proper#(X) |
proper#(cons(X1, X2)) → proper#(X1) | proper#(cons(X1, X2)) → proper#(X2) |
proper#(dbl(X)) → proper#(X) | proper#(dbls(X)) → proper#(X) |
proper#(indx(X1, X2)) → proper#(X2) | proper#(sel(X1, X2)) → proper#(X2) |
proper#(indx(X1, X2)) → proper#(X1) | proper#(from(X)) → proper#(X) |
dbl#(ok(X)) → dbl#(X) | dbl#(mark(X)) → dbl#(X) |
cons#(ok(X1), ok(X2)) → cons#(X1, X2) |
active#(sel(X1, X2)) → active#(X2) | active#(indx(X1, X2)) → active#(X1) |
active#(sel(X1, X2)) → active#(X1) | active#(dbls(X)) → active#(X) |
active#(dbl(X)) → active#(X) |
dbls#(ok(X)) → dbls#(X) | dbls#(mark(X)) → dbls#(X) |
indx#(ok(X1), ok(X2)) → indx#(X1, X2) | indx#(mark(X1), X2) → indx#(X1, X2) |
top#(mark(X)) → top#(proper(X)) | top#(ok(X)) → top#(active(X)) |
Problem 2: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, cons, top, nil
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
Problem 3: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
indx#(ok(X1), ok(X2)) | → | indx#(X1, X2) | | indx#(mark(X1), X2) | → | indx#(X1, X2) |
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, cons, top, nil
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
indx#(ok(X1), ok(X2)) | → | indx#(X1, X2) | | indx#(mark(X1), X2) | → | indx#(X1, X2) |
Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
proper#(sel(X1, X2)) | → | proper#(X1) | | proper#(s(X)) | → | proper#(X) |
proper#(cons(X1, X2)) | → | proper#(X1) | | proper#(cons(X1, X2)) | → | proper#(X2) |
proper#(dbl(X)) | → | proper#(X) | | proper#(dbls(X)) | → | proper#(X) |
proper#(indx(X1, X2)) | → | proper#(X2) | | proper#(sel(X1, X2)) | → | proper#(X2) |
proper#(indx(X1, X2)) | → | proper#(X1) | | proper#(from(X)) | → | proper#(X) |
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, cons, top, nil
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
proper#(sel(X1, X2)) | → | proper#(X1) | | proper#(s(X)) | → | proper#(X) |
proper#(cons(X1, X2)) | → | proper#(X1) | | proper#(cons(X1, X2)) | → | proper#(X2) |
proper#(dbl(X)) | → | proper#(X) | | proper#(dbls(X)) | → | proper#(X) |
proper#(indx(X1, X2)) | → | proper#(X2) | | proper#(sel(X1, X2)) | → | proper#(X2) |
proper#(indx(X1, X2)) | → | proper#(X1) | | proper#(from(X)) | → | proper#(X) |
Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
active#(sel(X1, X2)) | → | active#(X2) | | active#(indx(X1, X2)) | → | active#(X1) |
active#(sel(X1, X2)) | → | active#(X1) | | active#(dbls(X)) | → | active#(X) |
active#(dbl(X)) | → | active#(X) |
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, cons, top, nil
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
active#(sel(X1, X2)) | → | active#(X2) | | active#(indx(X1, X2)) | → | active#(X1) |
active#(sel(X1, X2)) | → | active#(X1) | | active#(dbls(X)) | → | active#(X) |
active#(dbl(X)) | → | active#(X) |
Problem 6: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
sel#(mark(X1), X2) | → | sel#(X1, X2) | | sel#(ok(X1), ok(X2)) | → | sel#(X1, X2) |
sel#(X1, mark(X2)) | → | sel#(X1, X2) |
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, cons, top, nil
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
sel#(mark(X1), X2) | → | sel#(X1, X2) | | sel#(ok(X1), ok(X2)) | → | sel#(X1, X2) |
Problem 12: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
sel#(X1, mark(X2)) | → | sel#(X1, X2) |
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, nil, cons, top
Strategy
Function Precedence
mark < dbl = sel# = from = dbls = 0 = s = indx = active = ok = proper = sel = top = cons = nil
Argument Filtering
mark: 1
dbl: all arguments are removed from dbl
sel#: collapses to 2
from: collapses to 1
dbls: collapses to 1
0: all arguments are removed from 0
s: collapses to 1
indx: collapses to 1
active: collapses to 1
ok: collapses to 1
proper: all arguments are removed from proper
sel: 1 2
top: collapses to 1
cons: collapses to 1
nil: all arguments are removed from nil
Status
mark: multiset
dbl: multiset
0: multiset
proper: multiset
sel: lexicographic with permutation 1 → 2 2 → 1
nil: multiset
Usable Rules
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
sel#(X1, mark(X2)) → sel#(X1, X2) |
Problem 7: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, cons, top, nil
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
Problem 8: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
dbls#(ok(X)) | → | dbls#(X) | | dbls#(mark(X)) | → | dbls#(X) |
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, cons, top, nil
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
dbls#(ok(X)) | → | dbls#(X) | | dbls#(mark(X)) | → | dbls#(X) |
Problem 10: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
dbl#(ok(X)) | → | dbl#(X) | | dbl#(mark(X)) | → | dbl#(X) |
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, cons, top, nil
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
dbl#(ok(X)) | → | dbl#(X) | | dbl#(mark(X)) | → | dbl#(X) |
Problem 11: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) |
Rewrite Rules
active(dbl(0)) | → | mark(0) | | active(dbl(s(X))) | → | mark(s(s(dbl(X)))) |
active(dbls(nil)) | → | mark(nil) | | active(dbls(cons(X, Y))) | → | mark(cons(dbl(X), dbls(Y))) |
active(sel(0, cons(X, Y))) | → | mark(X) | | active(sel(s(X), cons(Y, Z))) | → | mark(sel(X, Z)) |
active(indx(nil, X)) | → | mark(nil) | | active(indx(cons(X, Y), Z)) | → | mark(cons(sel(X, Z), indx(Y, Z))) |
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(dbl(X)) | → | dbl(active(X)) |
active(dbls(X)) | → | dbls(active(X)) | | active(sel(X1, X2)) | → | sel(active(X1), X2) |
active(sel(X1, X2)) | → | sel(X1, active(X2)) | | active(indx(X1, X2)) | → | indx(active(X1), X2) |
dbl(mark(X)) | → | mark(dbl(X)) | | dbls(mark(X)) | → | mark(dbls(X)) |
sel(mark(X1), X2) | → | mark(sel(X1, X2)) | | sel(X1, mark(X2)) | → | mark(sel(X1, X2)) |
indx(mark(X1), X2) | → | mark(indx(X1, X2)) | | proper(dbl(X)) | → | dbl(proper(X)) |
proper(0) | → | ok(0) | | proper(s(X)) | → | s(proper(X)) |
proper(dbls(X)) | → | dbls(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(sel(X1, X2)) | → | sel(proper(X1), proper(X2)) |
proper(indx(X1, X2)) | → | indx(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
dbl(ok(X)) | → | ok(dbl(X)) | | s(ok(X)) | → | ok(s(X)) |
dbls(ok(X)) | → | ok(dbls(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
sel(ok(X1), ok(X2)) | → | ok(sel(X1, X2)) | | indx(ok(X1), ok(X2)) | → | ok(indx(X1, X2)) |
from(ok(X)) | → | ok(from(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: mark, dbl, from, dbls, 0, s, indx, active, ok, proper, sel, cons, top, nil
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) |