YES

The TRS could be proven terminating. The proof took 2585 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (145ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (1306ms).
 |    | – Problem 3 was processed with processor DependencyGraph (27ms).
 |    |    | – Problem 4 was processed with processor PolynomialLinearRange4iUR (510ms).
 |    |    |    | – Problem 5 was processed with processor PolynomialLinearRange4iUR (356ms).
 |    |    |    |    | – Problem 6 was processed with processor DependencyGraph (2ms).
 |    |    |    |    |    | – Problem 7 was processed with processor PolynomialLinearRange4iUR (30ms).
 |    |    |    |    |    |    | – Problem 8 was processed with processor PolynomialLinearRange4iUR (6ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__from#(X)mark#(X)mark#(from(X))a__from#(mark(X))
mark#(add(X1, X2))a__add#(mark(X1), mark(X2))a__fst#(s(X), cons(Y, Z))mark#(Y)
mark#(from(X))mark#(X)mark#(cons(X1, X2))mark#(X1)
mark#(len(X))a__len#(mark(X))mark#(fst(X1, X2))mark#(X1)
a__add#(0, X)mark#(X)mark#(fst(X1, X2))mark#(X2)
mark#(fst(X1, X2))a__fst#(mark(X1), mark(X2))mark#(add(X1, X2))mark#(X2)
mark#(len(X))mark#(X)mark#(add(X1, X2))mark#(X1)

Rewrite Rules

a__fst(0, Z)nila__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__add(0, X)mark(X)
a__add(s(X), Y)s(add(X, Y))a__len(nil)0
a__len(cons(X, Z))s(len(Z))mark(fst(X1, X2))a__fst(mark(X1), mark(X2))
mark(from(X))a__from(mark(X))mark(add(X1, X2))a__add(mark(X1), mark(X2))
mark(len(X))a__len(mark(X))mark(0)0
mark(s(X))s(X)mark(nil)nil
mark(cons(X1, X2))cons(mark(X1), X2)a__fst(X1, X2)fst(X1, X2)
a__from(X)from(X)a__add(X1, X2)add(X1, X2)
a__len(X)len(X)

Original Signature

Termination of terms over the following signature is verified: mark, from, len, a__add, add, fst, 0, s, a__fst, a__len, a__from, nil, cons

Strategy


The following SCCs where found

a__from#(X) → mark#(X)mark#(from(X)) → a__from#(mark(X))
mark#(add(X1, X2)) → a__add#(mark(X1), mark(X2))a__fst#(s(X), cons(Y, Z)) → mark#(Y)
mark#(from(X)) → mark#(X)mark#(cons(X1, X2)) → mark#(X1)
mark#(fst(X1, X2)) → mark#(X1)a__add#(0, X) → mark#(X)
mark#(fst(X1, X2)) → mark#(X2)mark#(fst(X1, X2)) → a__fst#(mark(X1), mark(X2))
mark#(len(X)) → mark#(X)mark#(add(X1, X2)) → mark#(X2)
mark#(add(X1, X2)) → mark#(X1)

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

a__from#(X)mark#(X)mark#(from(X))a__from#(mark(X))
mark#(add(X1, X2))a__add#(mark(X1), mark(X2))a__fst#(s(X), cons(Y, Z))mark#(Y)
mark#(from(X))mark#(X)mark#(cons(X1, X2))mark#(X1)
mark#(fst(X1, X2))mark#(X1)a__add#(0, X)mark#(X)
mark#(fst(X1, X2))mark#(X2)mark#(fst(X1, X2))a__fst#(mark(X1), mark(X2))
mark#(add(X1, X2))mark#(X2)mark#(len(X))mark#(X)
mark#(add(X1, X2))mark#(X1)

Rewrite Rules

a__fst(0, Z)nila__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__add(0, X)mark(X)
a__add(s(X), Y)s(add(X, Y))a__len(nil)0
a__len(cons(X, Z))s(len(Z))mark(fst(X1, X2))a__fst(mark(X1), mark(X2))
mark(from(X))a__from(mark(X))mark(add(X1, X2))a__add(mark(X1), mark(X2))
mark(len(X))a__len(mark(X))mark(0)0
mark(s(X))s(X)mark(nil)nil
mark(cons(X1, X2))cons(mark(X1), X2)a__fst(X1, X2)fst(X1, X2)
a__from(X)from(X)a__add(X1, X2)add(X1, X2)
a__len(X)len(X)

Original Signature

Termination of terms over the following signature is verified: mark, from, len, a__add, add, fst, 0, s, a__fst, a__len, a__from, nil, cons

Strategy


Polynomial Interpretation

Improved Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(s(X))s(X)
mark(0)0a__from(X)from(X)
a__len(X)len(X)a__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__len(nil)0
a__fst(X1, X2)fst(X1, X2)mark(len(X))a__len(mark(X))
a__add(X1, X2)add(X1, X2)a__len(cons(X, Z))s(len(Z))
a__fst(0, Z)nila__add(s(X), Y)s(add(X, Y))
mark(from(X))a__from(mark(X))mark(nil)nil
mark(fst(X1, X2))a__fst(mark(X1), mark(X2))mark(add(X1, X2))a__add(mark(X1), mark(X2))
a__add(0, X)mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

a__add#(0, X)mark#(X)

Problem 3: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__from#(X)mark#(X)mark#(fst(X1, X2))a__fst#(mark(X1), mark(X2))
mark#(from(X))a__from#(mark(X))mark#(add(X1, X2))a__add#(mark(X1), mark(X2))
a__fst#(s(X), cons(Y, Z))mark#(Y)mark#(from(X))mark#(X)
mark#(cons(X1, X2))mark#(X1)mark#(len(X))mark#(X)
mark#(add(X1, X2))mark#(X2)mark#(fst(X1, X2))mark#(X1)
mark#(add(X1, X2))mark#(X1)mark#(fst(X1, X2))mark#(X2)

Rewrite Rules

a__fst(0, Z)nila__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__add(0, X)mark(X)
a__add(s(X), Y)s(add(X, Y))a__len(nil)0
a__len(cons(X, Z))s(len(Z))mark(fst(X1, X2))a__fst(mark(X1), mark(X2))
mark(from(X))a__from(mark(X))mark(add(X1, X2))a__add(mark(X1), mark(X2))
mark(len(X))a__len(mark(X))mark(0)0
mark(s(X))s(X)mark(nil)nil
mark(cons(X1, X2))cons(mark(X1), X2)a__fst(X1, X2)fst(X1, X2)
a__from(X)from(X)a__add(X1, X2)add(X1, X2)
a__len(X)len(X)

Original Signature

Termination of terms over the following signature is verified: mark, from, len, a__add, add, fst, 0, s, a__fst, a__len, a__from, nil, cons

Strategy


The following SCCs where found

a__from#(X) → mark#(X)mark#(fst(X1, X2)) → a__fst#(mark(X1), mark(X2))
mark#(from(X)) → a__from#(mark(X))a__fst#(s(X), cons(Y, Z)) → mark#(Y)
mark#(from(X)) → mark#(X)mark#(cons(X1, X2)) → mark#(X1)
mark#(len(X)) → mark#(X)mark#(add(X1, X2)) → mark#(X2)
mark#(fst(X1, X2)) → mark#(X1)mark#(add(X1, X2)) → mark#(X1)
mark#(fst(X1, X2)) → mark#(X2)

Problem 4: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

a__from#(X)mark#(X)mark#(fst(X1, X2))a__fst#(mark(X1), mark(X2))
mark#(from(X))a__from#(mark(X))a__fst#(s(X), cons(Y, Z))mark#(Y)
mark#(from(X))mark#(X)mark#(cons(X1, X2))mark#(X1)
mark#(len(X))mark#(X)mark#(add(X1, X2))mark#(X2)
mark#(fst(X1, X2))mark#(X1)mark#(add(X1, X2))mark#(X1)
mark#(fst(X1, X2))mark#(X2)

Rewrite Rules

a__fst(0, Z)nila__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__add(0, X)mark(X)
a__add(s(X), Y)s(add(X, Y))a__len(nil)0
a__len(cons(X, Z))s(len(Z))mark(fst(X1, X2))a__fst(mark(X1), mark(X2))
mark(from(X))a__from(mark(X))mark(add(X1, X2))a__add(mark(X1), mark(X2))
mark(len(X))a__len(mark(X))mark(0)0
mark(s(X))s(X)mark(nil)nil
mark(cons(X1, X2))cons(mark(X1), X2)a__fst(X1, X2)fst(X1, X2)
a__from(X)from(X)a__add(X1, X2)add(X1, X2)
a__len(X)len(X)

Original Signature

Termination of terms over the following signature is verified: mark, from, len, a__add, add, fst, 0, s, a__fst, a__len, a__from, nil, cons

Strategy


Polynomial Interpretation

Improved Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(s(X))s(X)
mark(0)0a__from(X)from(X)
a__len(X)len(X)a__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__len(nil)0
a__fst(X1, X2)fst(X1, X2)mark(len(X))a__len(mark(X))
a__add(X1, X2)add(X1, X2)a__len(cons(X, Z))s(len(Z))
a__fst(0, Z)nila__add(s(X), Y)s(add(X, Y))
mark(from(X))a__from(mark(X))mark(nil)nil
mark(fst(X1, X2))a__fst(mark(X1), mark(X2))mark(add(X1, X2))a__add(mark(X1), mark(X2))
a__add(0, X)mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(add(X1, X2))mark#(X2)mark#(add(X1, X2))mark#(X1)

Problem 5: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

a__from#(X)mark#(X)mark#(from(X))a__from#(mark(X))
mark#(fst(X1, X2))a__fst#(mark(X1), mark(X2))a__fst#(s(X), cons(Y, Z))mark#(Y)
mark#(from(X))mark#(X)mark#(cons(X1, X2))mark#(X1)
mark#(len(X))mark#(X)mark#(fst(X1, X2))mark#(X1)
mark#(fst(X1, X2))mark#(X2)

Rewrite Rules

a__fst(0, Z)nila__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__add(0, X)mark(X)
a__add(s(X), Y)s(add(X, Y))a__len(nil)0
a__len(cons(X, Z))s(len(Z))mark(fst(X1, X2))a__fst(mark(X1), mark(X2))
mark(from(X))a__from(mark(X))mark(add(X1, X2))a__add(mark(X1), mark(X2))
mark(len(X))a__len(mark(X))mark(0)0
mark(s(X))s(X)mark(nil)nil
mark(cons(X1, X2))cons(mark(X1), X2)a__fst(X1, X2)fst(X1, X2)
a__from(X)from(X)a__add(X1, X2)add(X1, X2)
a__len(X)len(X)

Original Signature

Termination of terms over the following signature is verified: mark, from, len, a__add, add, fst, 0, s, a__fst, a__len, a__from, nil, cons

Strategy


Polynomial Interpretation

Improved Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(s(X))s(X)
mark(0)0a__from(X)from(X)
a__len(X)len(X)a__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__len(nil)0
a__fst(X1, X2)fst(X1, X2)mark(len(X))a__len(mark(X))
a__add(X1, X2)add(X1, X2)a__len(cons(X, Z))s(len(Z))
a__fst(0, Z)nila__add(s(X), Y)s(add(X, Y))
mark(from(X))a__from(mark(X))mark(nil)nil
mark(fst(X1, X2))a__fst(mark(X1), mark(X2))mark(add(X1, X2))a__add(mark(X1), mark(X2))
a__add(0, X)mark(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(fst(X1, X2))a__fst#(mark(X1), mark(X2))mark#(from(X))a__from#(mark(X))
a__fst#(s(X), cons(Y, Z))mark#(Y)mark#(from(X))mark#(X)
mark#(cons(X1, X2))mark#(X1)

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__from#(X)mark#(X)mark#(len(X))mark#(X)
mark#(fst(X1, X2))mark#(X1)mark#(fst(X1, X2))mark#(X2)

Rewrite Rules

a__fst(0, Z)nila__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__add(0, X)mark(X)
a__add(s(X), Y)s(add(X, Y))a__len(nil)0
a__len(cons(X, Z))s(len(Z))mark(fst(X1, X2))a__fst(mark(X1), mark(X2))
mark(from(X))a__from(mark(X))mark(add(X1, X2))a__add(mark(X1), mark(X2))
mark(len(X))a__len(mark(X))mark(0)0
mark(s(X))s(X)mark(nil)nil
mark(cons(X1, X2))cons(mark(X1), X2)a__fst(X1, X2)fst(X1, X2)
a__from(X)from(X)a__add(X1, X2)add(X1, X2)
a__len(X)len(X)

Original Signature

Termination of terms over the following signature is verified: mark, from, len, a__add, add, fst, 0, s, a__fst, a__len, a__from, nil, cons

Strategy


The following SCCs where found

mark#(len(X)) → mark#(X)mark#(fst(X1, X2)) → mark#(X1)
mark#(fst(X1, X2)) → mark#(X2)

Problem 7: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

mark#(len(X))mark#(X)mark#(fst(X1, X2))mark#(X1)
mark#(fst(X1, X2))mark#(X2)

Rewrite Rules

a__fst(0, Z)nila__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__add(0, X)mark(X)
a__add(s(X), Y)s(add(X, Y))a__len(nil)0
a__len(cons(X, Z))s(len(Z))mark(fst(X1, X2))a__fst(mark(X1), mark(X2))
mark(from(X))a__from(mark(X))mark(add(X1, X2))a__add(mark(X1), mark(X2))
mark(len(X))a__len(mark(X))mark(0)0
mark(s(X))s(X)mark(nil)nil
mark(cons(X1, X2))cons(mark(X1), X2)a__fst(X1, X2)fst(X1, X2)
a__from(X)from(X)a__add(X1, X2)add(X1, X2)
a__len(X)len(X)

Original Signature

Termination of terms over the following signature is verified: mark, from, len, a__add, add, fst, 0, s, a__fst, a__len, a__from, nil, cons

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(fst(X1, X2))mark#(X1)mark#(fst(X1, X2))mark#(X2)

Problem 8: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

mark#(len(X))mark#(X)

Rewrite Rules

a__fst(0, Z)nila__fst(s(X), cons(Y, Z))cons(mark(Y), fst(X, Z))
a__from(X)cons(mark(X), from(s(X)))a__add(0, X)mark(X)
a__add(s(X), Y)s(add(X, Y))a__len(nil)0
a__len(cons(X, Z))s(len(Z))mark(fst(X1, X2))a__fst(mark(X1), mark(X2))
mark(from(X))a__from(mark(X))mark(add(X1, X2))a__add(mark(X1), mark(X2))
mark(len(X))a__len(mark(X))mark(0)0
mark(s(X))s(X)mark(nil)nil
mark(cons(X1, X2))cons(mark(X1), X2)a__fst(X1, X2)fst(X1, X2)
a__from(X)from(X)a__add(X1, X2)add(X1, X2)
a__len(X)len(X)

Original Signature

Termination of terms over the following signature is verified: mark, from, len, a__add, add, fst, 0, s, a__fst, a__len, a__from, nil, cons

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(len(X))mark#(X)