TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (4340ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 11 was processed with processor ReductionPairSAT (79ms).
 |    |    | – Problem 15 was processed with processor ReductionPairSAT (24ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 12 was processed with processor ReductionPairSAT (65ms).
 |    |    | – Problem 16 was processed with processor ReductionPairSAT (70ms).
 | – Problem 6 was processed with processor SubtermCriterion (3ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 13 was processed with processor ReductionPairSAT (37ms).
 |    |    | – Problem 17 was processed with processor ReductionPairSAT (64ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 9 was processed with processor SubtermCriterion (0ms).
 | – Problem 10 was processed with processor ReductionPairSAT (10681ms).
 |    | – Problem 14 was processed with processor ReductionPairSAT (13470ms).
 |    |    | – Problem 18 was processed with processor ReductionPairSAT (14955ms).
 |    |    |    | – Problem 19 remains open; application of the following processors failed [DependencyGraph (447ms), ReductionPairSAT (timeout)].

The following open problems remain:



Open Dependency Pair Problem 19

Dependency Pairs

mark#(cons(X1, X2))active#(cons(mark(X1), X2))active#(first(0, X))mark#(nil)
active#(add(s(X), Y))mark#(s(add(X, Y)))mark#(sqr(X))active#(sqr(mark(X)))
active#(dbl(s(X)))mark#(s(s(dbl(X))))mark#(recip(X))mark#(X)
active#(sqr(0))mark#(0)active#(first(s(X), cons(Y, Z)))mark#(cons(Y, first(X, Z)))
active#(sqr(s(X)))mark#(s(add(sqr(X), dbl(X))))mark#(add(X1, X2))mark#(X2)
mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))mark#(s(X))mark#(X)
mark#(add(X1, X2))mark#(X1)mark#(first(X1, X2))mark#(X2)
mark#(s(X))active#(s(mark(X)))mark#(cons(X1, X2))mark#(X1)
mark#(first(X1, X2))active#(first(mark(X1), mark(X2)))mark#(dbl(X))active#(dbl(mark(X)))
active#(add(0, X))mark#(X)mark#(terms(X))active#(terms(mark(X)))
mark#(dbl(X))mark#(X)mark#(terms(X))mark#(X)
mark#(sqr(X))mark#(X)active#(dbl(0))mark#(0)
mark#(first(X1, X2))mark#(X1)active#(terms(N))mark#(cons(recip(sqr(N)), terms(s(N))))

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

active#(first(0, X))mark#(nil)mark#(cons(X1, X2))active#(cons(mark(X1), X2))
add#(X1, mark(X2))add#(X1, X2)active#(add(s(X), Y))mark#(s(add(X, Y)))
active#(sqr(s(X)))s#(add(sqr(X), dbl(X)))recip#(active(X))recip#(X)
active#(dbl(s(X)))s#(dbl(X))active#(terms(N))terms#(s(N))
active#(first(s(X), cons(Y, Z)))cons#(Y, first(X, Z))mark#(s(X))s#(mark(X))
first#(X1, active(X2))first#(X1, X2)terms#(mark(X))terms#(X)
mark#(recip(X))mark#(X)active#(first(s(X), cons(Y, Z)))mark#(cons(Y, first(X, Z)))
mark#(dbl(X))dbl#(mark(X))mark#(add(X1, X2))mark#(X2)
mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))mark#(s(X))mark#(X)
active#(dbl(s(X)))dbl#(X)first#(mark(X1), X2)first#(X1, X2)
mark#(add(X1, X2))mark#(X1)mark#(recip(X))active#(recip(mark(X)))
mark#(recip(X))recip#(mark(X))active#(sqr(s(X)))dbl#(X)
active#(dbl(s(X)))s#(s(dbl(X)))terms#(active(X))terms#(X)
mark#(cons(X1, X2))mark#(X1)active#(sqr(s(X)))sqr#(X)
mark#(dbl(X))active#(dbl(mark(X)))active#(add(0, X))mark#(X)
active#(terms(N))sqr#(N)add#(mark(X1), X2)add#(X1, X2)
mark#(terms(X))active#(terms(mark(X)))cons#(X1, active(X2))cons#(X1, X2)
mark#(sqr(X))mark#(X)active#(add(s(X), Y))add#(X, Y)
mark#(add(X1, X2))add#(mark(X1), mark(X2))first#(active(X1), X2)first#(X1, X2)
active#(sqr(s(X)))add#(sqr(X), dbl(X))active#(dbl(0))mark#(0)
add#(active(X1), X2)add#(X1, X2)mark#(first(X1, X2))mark#(X1)
active#(terms(N))mark#(cons(recip(sqr(N)), terms(s(N))))mark#(sqr(X))sqr#(mark(X))
cons#(mark(X1), X2)cons#(X1, X2)mark#(sqr(X))active#(sqr(mark(X)))
active#(dbl(s(X)))mark#(s(s(dbl(X))))active#(first(s(X), cons(Y, Z)))first#(X, Z)
active#(sqr(0))mark#(0)mark#(nil)active#(nil)
active#(add(s(X), Y))s#(add(X, Y))active#(sqr(s(X)))mark#(s(add(sqr(X), dbl(X))))
sqr#(active(X))sqr#(X)add#(X1, active(X2))add#(X1, X2)
cons#(X1, mark(X2))cons#(X1, X2)mark#(cons(X1, X2))cons#(mark(X1), X2)
mark#(first(X1, X2))first#(mark(X1), mark(X2))first#(X1, mark(X2))first#(X1, X2)
mark#(0)active#(0)mark#(first(X1, X2))mark#(X2)
mark#(s(X))active#(s(mark(X)))mark#(first(X1, X2))active#(first(mark(X1), mark(X2)))
active#(terms(N))cons#(recip(sqr(N)), terms(s(N)))cons#(active(X1), X2)cons#(X1, X2)
dbl#(mark(X))dbl#(X)active#(terms(N))recip#(sqr(N))
mark#(dbl(X))mark#(X)mark#(terms(X))mark#(X)
s#(mark(X))s#(X)mark#(terms(X))terms#(mark(X))
sqr#(mark(X))sqr#(X)active#(terms(N))s#(N)
s#(active(X))s#(X)dbl#(active(X))dbl#(X)
recip#(mark(X))recip#(X)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


The following SCCs where found

sqr#(mark(X)) → sqr#(X)sqr#(active(X)) → sqr#(X)

mark#(cons(X1, X2)) → active#(cons(mark(X1), X2))active#(first(0, X)) → mark#(nil)
active#(add(s(X), Y)) → mark#(s(add(X, Y)))mark#(sqr(X)) → active#(sqr(mark(X)))
active#(dbl(s(X))) → mark#(s(s(dbl(X))))mark#(recip(X)) → mark#(X)
active#(sqr(0)) → mark#(0)mark#(nil) → active#(nil)
active#(first(s(X), cons(Y, Z))) → mark#(cons(Y, first(X, Z)))active#(sqr(s(X))) → mark#(s(add(sqr(X), dbl(X))))
mark#(add(X1, X2)) → mark#(X2)mark#(add(X1, X2)) → active#(add(mark(X1), mark(X2)))
mark#(s(X)) → mark#(X)mark#(add(X1, X2)) → mark#(X1)
mark#(recip(X)) → active#(recip(mark(X)))mark#(0) → active#(0)
mark#(first(X1, X2)) → mark#(X2)mark#(s(X)) → active#(s(mark(X)))
mark#(first(X1, X2)) → active#(first(mark(X1), mark(X2)))mark#(cons(X1, X2)) → mark#(X1)
mark#(dbl(X)) → active#(dbl(mark(X)))active#(add(0, X)) → mark#(X)
mark#(terms(X)) → active#(terms(mark(X)))mark#(dbl(X)) → mark#(X)
mark#(terms(X)) → mark#(X)mark#(sqr(X)) → mark#(X)
active#(dbl(0)) → mark#(0)mark#(first(X1, X2)) → mark#(X1)
active#(terms(N)) → mark#(cons(recip(sqr(N)), terms(s(N))))

dbl#(mark(X)) → dbl#(X)dbl#(active(X)) → dbl#(X)

recip#(active(X)) → recip#(X)recip#(mark(X)) → recip#(X)

cons#(X1, active(X2)) → cons#(X1, X2)cons#(mark(X1), X2) → cons#(X1, X2)
cons#(X1, mark(X2)) → cons#(X1, X2)cons#(active(X1), X2) → cons#(X1, X2)

s#(mark(X)) → s#(X)s#(active(X)) → s#(X)

terms#(mark(X)) → terms#(X)terms#(active(X)) → terms#(X)

first#(active(X1), X2) → first#(X1, X2)first#(mark(X1), X2) → first#(X1, X2)
first#(X1, mark(X2)) → first#(X1, X2)first#(X1, active(X2)) → first#(X1, X2)

add#(active(X1), X2) → add#(X1, X2)add#(X1, mark(X2)) → add#(X1, X2)
add#(X1, active(X2)) → add#(X1, X2)add#(mark(X1), X2) → add#(X1, X2)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(X1, active(X2))cons#(X1, X2)cons#(mark(X1), X2)cons#(X1, X2)
cons#(X1, mark(X2))cons#(X1, X2)cons#(active(X1), X2)cons#(X1, X2)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(mark(X1), X2)cons#(X1, X2)cons#(active(X1), X2)cons#(X1, X2)

Problem 11: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

cons#(X1, active(X2))cons#(X1, X2)cons#(X1, mark(X2))cons#(X1, X2)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, dbl, mark, recip, add, first, nil, cons

Strategy


Function Precedence

mark = active < terms = sqr = dbl = recip = add = cons# = 0 = s = first = cons = nil

Argument Filtering

terms: all arguments are removed from terms
sqr: all arguments are removed from sqr
mark: collapses to 1
dbl: all arguments are removed from dbl
recip: all arguments are removed from recip
add: all arguments are removed from add
cons#: collapses to 2
0: all arguments are removed from 0
s: all arguments are removed from s
active: 1
first: collapses to 1
cons: 1 2
nil: all arguments are removed from nil

Status

terms: multiset
sqr: multiset
dbl: multiset
recip: multiset
add: multiset
0: multiset
s: multiset
active: multiset
cons: lexicographic with permutation 1 → 1 2 → 2
nil: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

cons#(X1, active(X2)) → cons#(X1, X2)

Problem 15: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

cons#(X1, mark(X2))cons#(X1, X2)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Function Precedence

terms = sqr = mark = dbl = recip = add = cons# = 0 = s = active = first = cons = nil

Argument Filtering

terms: all arguments are removed from terms
sqr: all arguments are removed from sqr
mark: 1
dbl: collapses to 1
recip: all arguments are removed from recip
add: collapses to 2
cons#: collapses to 2
0: all arguments are removed from 0
s: all arguments are removed from s
active: collapses to 1
first: all arguments are removed from first
cons: 1 2
nil: all arguments are removed from nil

Status

terms: multiset
sqr: multiset
mark: lexicographic with permutation 1 → 1
recip: multiset
0: multiset
s: multiset
first: multiset
cons: lexicographic with permutation 1 → 1 2 → 2
nil: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

cons#(X1, mark(X2)) → cons#(X1, X2)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

dbl#(mark(X))dbl#(X)dbl#(active(X))dbl#(X)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

dbl#(mark(X))dbl#(X)dbl#(active(X))dbl#(X)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

recip#(active(X))recip#(X)recip#(mark(X))recip#(X)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

recip#(active(X))recip#(X)recip#(mark(X))recip#(X)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

add#(active(X1), X2)add#(X1, X2)add#(X1, mark(X2))add#(X1, X2)
add#(X1, active(X2))add#(X1, X2)add#(mark(X1), X2)add#(X1, X2)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

add#(active(X1), X2)add#(X1, X2)add#(mark(X1), X2)add#(X1, X2)

Problem 12: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

add#(X1, mark(X2))add#(X1, X2)add#(X1, active(X2))add#(X1, X2)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, dbl, mark, recip, add, first, nil, cons

Strategy


Function Precedence

mark < add# < active < terms = sqr = dbl = recip = add = 0 = s = first = cons = nil

Argument Filtering

terms: collapses to 1
sqr: 1
mark: collapses to 1
dbl: 1
recip: collapses to 1
add: 1
0: all arguments are removed from 0
s: all arguments are removed from s
active: 1
add#: 1 2
first: all arguments are removed from first
cons: all arguments are removed from cons
nil: all arguments are removed from nil

Status

sqr: lexicographic with permutation 1 → 1
dbl: lexicographic with permutation 1 → 1
add: lexicographic with permutation 1 → 1
0: multiset
s: multiset
active: multiset
add#: lexicographic with permutation 1 → 2 2 → 1
first: multiset
cons: multiset
nil: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

add#(X1, active(X2)) → add#(X1, X2)

Problem 16: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

add#(X1, mark(X2))add#(X1, X2)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Function Precedence

mark < terms = sqr = dbl = recip = add = 0 = s = active = add# = first = cons = nil

Argument Filtering

terms: all arguments are removed from terms
sqr: collapses to 1
mark: 1
dbl: collapses to 1
recip: all arguments are removed from recip
add: collapses to 1
0: all arguments are removed from 0
s: collapses to 1
active: 1
add#: collapses to 2
first: all arguments are removed from first
cons: 1 2
nil: all arguments are removed from nil

Status

terms: multiset
mark: multiset
recip: multiset
0: multiset
active: lexicographic with permutation 1 → 1
first: multiset
cons: lexicographic with permutation 1 → 2 2 → 1
nil: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

add#(X1, mark(X2)) → add#(X1, X2)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(active(X))s#(X)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(active(X))s#(X)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

first#(active(X1), X2)first#(X1, X2)first#(mark(X1), X2)first#(X1, X2)
first#(X1, mark(X2))first#(X1, X2)first#(X1, active(X2))first#(X1, X2)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

first#(active(X1), X2)first#(X1, X2)first#(mark(X1), X2)first#(X1, X2)

Problem 13: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

first#(X1, active(X2))first#(X1, X2)first#(X1, mark(X2))first#(X1, X2)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, dbl, mark, recip, add, first, nil, cons

Strategy


Function Precedence

active < mark < terms = sqr = dbl = recip = add = first# = 0 = s = first = cons = nil

Argument Filtering

terms: all arguments are removed from terms
sqr: collapses to 1
mark: collapses to 1
dbl: collapses to 1
recip: all arguments are removed from recip
add: 1 2
first#: 1 2
0: all arguments are removed from 0
s: 1
active: 1
first: collapses to 2
cons: collapses to 1
nil: all arguments are removed from nil

Status

terms: multiset
recip: multiset
add: lexicographic with permutation 1 → 2 2 → 1
first#: lexicographic with permutation 1 → 1 2 → 2
0: multiset
s: lexicographic with permutation 1 → 1
active: multiset
nil: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

first#(X1, active(X2)) → first#(X1, X2)

Problem 17: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

first#(X1, mark(X2))first#(X1, X2)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Function Precedence

first# < mark < terms = sqr = dbl = recip = add = 0 = s = active = first = cons = nil

Argument Filtering

terms: all arguments are removed from terms
sqr: all arguments are removed from sqr
mark: 1
dbl: all arguments are removed from dbl
recip: all arguments are removed from recip
add: all arguments are removed from add
first#: 1 2
0: all arguments are removed from 0
s: all arguments are removed from s
active: all arguments are removed from active
first: 1 2
cons: 1
nil: all arguments are removed from nil

Status

terms: multiset
sqr: multiset
mark: multiset
dbl: multiset
recip: multiset
add: multiset
first#: lexicographic with permutation 1 → 1 2 → 2
0: multiset
s: multiset
active: multiset
first: lexicographic with permutation 1 → 1 2 → 2
cons: lexicographic with permutation 1 → 1
nil: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

first#(X1, mark(X2)) → first#(X1, X2)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

sqr#(mark(X))sqr#(X)sqr#(active(X))sqr#(X)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

sqr#(mark(X))sqr#(X)sqr#(active(X))sqr#(X)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

terms#(mark(X))terms#(X)terms#(active(X))terms#(X)

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

terms#(mark(X))terms#(X)terms#(active(X))terms#(X)

Problem 10: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(cons(X1, X2))active#(cons(mark(X1), X2))active#(first(0, X))mark#(nil)
active#(add(s(X), Y))mark#(s(add(X, Y)))mark#(sqr(X))active#(sqr(mark(X)))
active#(dbl(s(X)))mark#(s(s(dbl(X))))mark#(recip(X))mark#(X)
active#(sqr(0))mark#(0)mark#(nil)active#(nil)
active#(first(s(X), cons(Y, Z)))mark#(cons(Y, first(X, Z)))active#(sqr(s(X)))mark#(s(add(sqr(X), dbl(X))))
mark#(add(X1, X2))mark#(X2)mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))
mark#(s(X))mark#(X)mark#(add(X1, X2))mark#(X1)
mark#(recip(X))active#(recip(mark(X)))mark#(first(X1, X2))mark#(X2)
mark#(0)active#(0)mark#(s(X))active#(s(mark(X)))
mark#(cons(X1, X2))mark#(X1)mark#(first(X1, X2))active#(first(mark(X1), mark(X2)))
mark#(dbl(X))active#(dbl(mark(X)))active#(add(0, X))mark#(X)
mark#(terms(X))active#(terms(mark(X)))mark#(dbl(X))mark#(X)
mark#(terms(X))mark#(X)mark#(sqr(X))mark#(X)
active#(dbl(0))mark#(0)mark#(first(X1, X2))mark#(X1)
active#(terms(N))mark#(cons(recip(sqr(N)), terms(s(N))))

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Function Precedence

active# < active < terms = sqr = mark = dbl = recip = add = mark# = 0 = s = first = cons = nil

Argument Filtering

terms: all arguments are removed from terms
sqr: all arguments are removed from sqr
mark: all arguments are removed from mark
dbl: all arguments are removed from dbl
recip: all arguments are removed from recip
add: all arguments are removed from add
mark#: all arguments are removed from mark#
0: all arguments are removed from 0
s: all arguments are removed from s
active: collapses to 1
active#: collapses to 1
first: all arguments are removed from first
cons: all arguments are removed from cons
nil: all arguments are removed from nil

Status

terms: multiset
sqr: multiset
mark: multiset
dbl: multiset
recip: multiset
add: multiset
mark#: multiset
0: multiset
s: multiset
first: multiset
cons: multiset
nil: multiset

Usable Rules

mark(sqr(X)) → active(sqr(mark(X)))cons(active(X1), X2) → cons(X1, X2)
active(sqr(0)) → mark(0)mark(recip(X)) → active(recip(mark(X)))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))active(first(0, X)) → mark(nil)
add(X1, mark(X2)) → add(X1, X2)active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
first(X1, mark(X2)) → first(X1, X2)cons(X1, mark(X2)) → cons(X1, X2)
terms(active(X)) → terms(X)first(active(X1), X2) → first(X1, X2)
recip(mark(X)) → recip(X)first(X1, active(X2)) → first(X1, X2)
add(X1, active(X2)) → add(X1, X2)active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))active(terms(N)) → mark(cons(recip(sqr(N)), terms(s(N))))
add(mark(X1), X2) → add(X1, X2)mark(nil) → active(nil)
dbl(mark(X)) → dbl(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)
sqr(mark(X)) → sqr(X)first(mark(X1), X2) → first(X1, X2)
add(active(X1), X2) → add(X1, X2)terms(mark(X)) → terms(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))active(sqr(s(X))) → mark(s(add(sqr(X), dbl(X))))
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(terms(X)) → active(terms(mark(X)))active(add(0, X)) → mark(X)
s(mark(X)) → s(X)recip(active(X)) → recip(X)
sqr(active(X)) → sqr(X)mark(dbl(X)) → active(dbl(mark(X)))
dbl(active(X)) → dbl(X)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(0) → active#(0)

Problem 14: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

active#(first(0, X))mark#(nil)mark#(cons(X1, X2))active#(cons(mark(X1), X2))
active#(add(s(X), Y))mark#(s(add(X, Y)))mark#(sqr(X))active#(sqr(mark(X)))
active#(dbl(s(X)))mark#(s(s(dbl(X))))active#(sqr(0))mark#(0)
mark#(recip(X))mark#(X)mark#(nil)active#(nil)
active#(first(s(X), cons(Y, Z)))mark#(cons(Y, first(X, Z)))active#(sqr(s(X)))mark#(s(add(sqr(X), dbl(X))))
mark#(add(X1, X2))mark#(X2)mark#(s(X))mark#(X)
mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))mark#(add(X1, X2))mark#(X1)
mark#(recip(X))active#(recip(mark(X)))mark#(first(X1, X2))mark#(X2)
mark#(s(X))active#(s(mark(X)))mark#(cons(X1, X2))mark#(X1)
mark#(first(X1, X2))active#(first(mark(X1), mark(X2)))mark#(dbl(X))active#(dbl(mark(X)))
active#(add(0, X))mark#(X)mark#(terms(X))active#(terms(mark(X)))
mark#(dbl(X))mark#(X)mark#(terms(X))mark#(X)
mark#(sqr(X))mark#(X)active#(dbl(0))mark#(0)
mark#(first(X1, X2))mark#(X1)active#(terms(N))mark#(cons(recip(sqr(N)), terms(s(N))))

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, dbl, mark, recip, add, first, nil, cons

Strategy


Function Precedence

terms = sqr = mark = dbl = add = mark# = 0 = s = active = first = cons = nil < recip = active#

Argument Filtering

terms: all arguments are removed from terms
sqr: all arguments are removed from sqr
mark: all arguments are removed from mark
dbl: all arguments are removed from dbl
recip: all arguments are removed from recip
add: all arguments are removed from add
mark#: all arguments are removed from mark#
0: all arguments are removed from 0
s: all arguments are removed from s
active: collapses to 1
active#: collapses to 1
first: all arguments are removed from first
cons: all arguments are removed from cons
nil: all arguments are removed from nil

Status

terms: multiset
sqr: multiset
mark: multiset
dbl: multiset
recip: multiset
add: multiset
mark#: multiset
0: multiset
s: multiset
first: multiset
cons: multiset
nil: multiset

Usable Rules

mark(sqr(X)) → active(sqr(mark(X)))cons(active(X1), X2) → cons(X1, X2)
active(sqr(0)) → mark(0)mark(recip(X)) → active(recip(mark(X)))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))active(first(0, X)) → mark(nil)
add(X1, mark(X2)) → add(X1, X2)active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
first(X1, mark(X2)) → first(X1, X2)cons(X1, mark(X2)) → cons(X1, X2)
terms(active(X)) → terms(X)first(active(X1), X2) → first(X1, X2)
recip(mark(X)) → recip(X)first(X1, active(X2)) → first(X1, X2)
add(X1, active(X2)) → add(X1, X2)active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))active(terms(N)) → mark(cons(recip(sqr(N)), terms(s(N))))
add(mark(X1), X2) → add(X1, X2)mark(nil) → active(nil)
dbl(mark(X)) → dbl(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)
sqr(mark(X)) → sqr(X)first(mark(X1), X2) → first(X1, X2)
add(active(X1), X2) → add(X1, X2)terms(mark(X)) → terms(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))active(sqr(s(X))) → mark(s(add(sqr(X), dbl(X))))
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(terms(X)) → active(terms(mark(X)))active(add(0, X)) → mark(X)
s(mark(X)) → s(X)recip(active(X)) → recip(X)
sqr(active(X)) → sqr(X)mark(dbl(X)) → active(dbl(mark(X)))
dbl(active(X)) → dbl(X)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(recip(X)) → active#(recip(mark(X)))

Problem 18: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(cons(X1, X2))active#(cons(mark(X1), X2))active#(first(0, X))mark#(nil)
active#(add(s(X), Y))mark#(s(add(X, Y)))mark#(sqr(X))active#(sqr(mark(X)))
active#(dbl(s(X)))mark#(s(s(dbl(X))))mark#(recip(X))mark#(X)
active#(sqr(0))mark#(0)mark#(nil)active#(nil)
active#(first(s(X), cons(Y, Z)))mark#(cons(Y, first(X, Z)))active#(sqr(s(X)))mark#(s(add(sqr(X), dbl(X))))
mark#(add(X1, X2))mark#(X2)mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))
mark#(s(X))mark#(X)mark#(add(X1, X2))mark#(X1)
mark#(first(X1, X2))mark#(X2)mark#(s(X))active#(s(mark(X)))
mark#(cons(X1, X2))mark#(X1)mark#(first(X1, X2))active#(first(mark(X1), mark(X2)))
mark#(dbl(X))active#(dbl(mark(X)))active#(add(0, X))mark#(X)
mark#(terms(X))active#(terms(mark(X)))mark#(dbl(X))mark#(X)
mark#(terms(X))mark#(X)mark#(sqr(X))mark#(X)
active#(dbl(0))mark#(0)mark#(first(X1, X2))mark#(X1)
active#(terms(N))mark#(cons(recip(sqr(N)), terms(s(N))))

Rewrite Rules

active(terms(N))mark(cons(recip(sqr(N)), terms(s(N))))active(sqr(0))mark(0)
active(sqr(s(X)))mark(s(add(sqr(X), dbl(X))))active(dbl(0))mark(0)
active(dbl(s(X)))mark(s(s(dbl(X))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(first(0, X))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))mark(terms(X))active(terms(mark(X)))
mark(cons(X1, X2))active(cons(mark(X1), X2))mark(recip(X))active(recip(mark(X)))
mark(sqr(X))active(sqr(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(dbl(X))active(dbl(mark(X)))mark(first(X1, X2))active(first(mark(X1), mark(X2)))
mark(nil)active(nil)terms(mark(X))terms(X)
terms(active(X))terms(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)recip(mark(X))recip(X)
recip(active(X))recip(X)sqr(mark(X))sqr(X)
sqr(active(X))sqr(X)s(mark(X))s(X)
s(active(X))s(X)add(mark(X1), X2)add(X1, X2)
add(X1, mark(X2))add(X1, X2)add(active(X1), X2)add(X1, X2)
add(X1, active(X2))add(X1, X2)dbl(mark(X))dbl(X)
dbl(active(X))dbl(X)first(mark(X1), X2)first(X1, X2)
first(X1, mark(X2))first(X1, X2)first(active(X1), X2)first(X1, X2)
first(X1, active(X2))first(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, s, terms, sqr, active, mark, dbl, recip, add, first, cons, nil

Strategy


Function Precedence

active < terms = sqr = mark = dbl = recip = add = mark# = 0 = s = active# = first = cons = nil

Argument Filtering

terms: all arguments are removed from terms
sqr: all arguments are removed from sqr
mark: all arguments are removed from mark
dbl: all arguments are removed from dbl
recip: all arguments are removed from recip
add: all arguments are removed from add
mark#: all arguments are removed from mark#
0: all arguments are removed from 0
s: all arguments are removed from s
active: collapses to 1
active#: collapses to 1
first: all arguments are removed from first
cons: all arguments are removed from cons
nil: all arguments are removed from nil

Status

terms: multiset
sqr: multiset
mark: multiset
dbl: multiset
recip: multiset
add: multiset
mark#: multiset
0: multiset
s: multiset
first: multiset
cons: multiset
nil: multiset

Usable Rules

mark(sqr(X)) → active(sqr(mark(X)))cons(active(X1), X2) → cons(X1, X2)
active(sqr(0)) → mark(0)mark(recip(X)) → active(recip(mark(X)))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))active(first(0, X)) → mark(nil)
add(X1, mark(X2)) → add(X1, X2)active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
first(X1, mark(X2)) → first(X1, X2)cons(X1, mark(X2)) → cons(X1, X2)
terms(active(X)) → terms(X)first(active(X1), X2) → first(X1, X2)
recip(mark(X)) → recip(X)first(X1, active(X2)) → first(X1, X2)
add(X1, active(X2)) → add(X1, X2)active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))active(terms(N)) → mark(cons(recip(sqr(N)), terms(s(N))))
add(mark(X1), X2) → add(X1, X2)mark(nil) → active(nil)
dbl(mark(X)) → dbl(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)
sqr(mark(X)) → sqr(X)first(mark(X1), X2) → first(X1, X2)
add(active(X1), X2) → add(X1, X2)terms(mark(X)) → terms(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))active(sqr(s(X))) → mark(s(add(sqr(X), dbl(X))))
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(terms(X)) → active(terms(mark(X)))active(add(0, X)) → mark(X)
s(mark(X)) → s(X)recip(active(X)) → recip(X)
sqr(active(X)) → sqr(X)mark(dbl(X)) → active(dbl(mark(X)))
dbl(active(X)) → dbl(X)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(nil) → active#(nil)