YES

The TRS could be proven terminating. The proof took 60000 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (9ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

activate#(n__a)a#activate#(n__g(X))activate#(X)
activate#(n__f(X))f#(activate(X))activate#(n__g(X))g#(activate(X))
activate#(n__f(X))activate#(X)

Rewrite Rules

f(f(a))c(n__f(n__g(n__f(n__a))))f(X)n__f(X)
g(X)n__g(X)an__a
activate(n__f(X))f(activate(X))activate(n__g(X))g(activate(X))
activate(n__a)aactivate(X)X

Original Signature

Termination of terms over the following signature is verified: f, activate, g, c, n__a, a, n__f, n__g

Strategy


The following SCCs where found

activate#(n__g(X)) → activate#(X)activate#(n__f(X)) → activate#(X)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

activate#(n__g(X))activate#(X)activate#(n__f(X))activate#(X)

Rewrite Rules

f(f(a))c(n__f(n__g(n__f(n__a))))f(X)n__f(X)
g(X)n__g(X)an__a
activate(n__f(X))f(activate(X))activate(n__g(X))g(activate(X))
activate(n__a)aactivate(X)X

Original Signature

Termination of terms over the following signature is verified: f, activate, g, c, n__a, a, n__f, n__g

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

activate#(n__g(X))activate#(X)activate#(n__f(X))activate#(X)