YES

The TRS could be proven terminating. The proof took 809 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (71ms).
 | – Problem 2 was processed with processor SubtermCriterion (0ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4iUR (252ms).
 |    | – Problem 5 was processed with processor PolynomialLinearRange4iUR (109ms).
 |    |    | – Problem 6 was processed with processor PolynomialLinearRange4iUR (141ms).
 |    |    |    | – Problem 7 was processed with processor DependencyGraph (6ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

active#(g(X))mark#(h(X))h#(mark(X))h#(X)
mark#(h(X))h#(X)mark#(g(X))g#(X)
g#(mark(X))g#(X)active#(c)mark#(d)
active#(g(X))h#(X)mark#(h(X))active#(h(X))
mark#(d)active#(d)active#(h(d))mark#(g(c))
mark#(g(X))active#(g(X))mark#(c)active#(c)
g#(active(X))g#(X)active#(h(d))g#(c)
h#(active(X))h#(X)

Rewrite Rules

active(g(X))mark(h(X))active(c)mark(d)
active(h(d))mark(g(c))mark(g(X))active(g(X))
mark(h(X))active(h(X))mark(c)active(c)
mark(d)active(d)g(mark(X))g(X)
g(active(X))g(X)h(mark(X))h(X)
h(active(X))h(X)

Original Signature

Termination of terms over the following signature is verified: g, d, c, active, mark, h

Strategy


The following SCCs where found

active#(g(X)) → mark#(h(X))mark#(h(X)) → active#(h(X))
active#(h(d)) → mark#(g(c))mark#(g(X)) → active#(g(X))

g#(active(X)) → g#(X)g#(mark(X)) → g#(X)

h#(mark(X)) → h#(X)h#(active(X)) → h#(X)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

g#(active(X))g#(X)g#(mark(X))g#(X)

Rewrite Rules

active(g(X))mark(h(X))active(c)mark(d)
active(h(d))mark(g(c))mark(g(X))active(g(X))
mark(h(X))active(h(X))mark(c)active(c)
mark(d)active(d)g(mark(X))g(X)
g(active(X))g(X)h(mark(X))h(X)
h(active(X))h(X)

Original Signature

Termination of terms over the following signature is verified: g, d, c, active, mark, h

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

g#(active(X))g#(X)g#(mark(X))g#(X)

Problem 3: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

active#(g(X))mark#(h(X))mark#(h(X))active#(h(X))
active#(h(d))mark#(g(c))mark#(g(X))active#(g(X))

Rewrite Rules

active(g(X))mark(h(X))active(c)mark(d)
active(h(d))mark(g(c))mark(g(X))active(g(X))
mark(h(X))active(h(X))mark(c)active(c)
mark(d)active(d)g(mark(X))g(X)
g(active(X))g(X)h(mark(X))h(X)
h(active(X))h(X)

Original Signature

Termination of terms over the following signature is verified: g, d, c, active, mark, h

Strategy


Polynomial Interpretation

Improved Usable rules

g(active(X))g(X)h(mark(X))h(X)
g(mark(X))g(X)h(active(X))h(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

active#(h(d))mark#(g(c))

Problem 5: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

active#(g(X))mark#(h(X))mark#(h(X))active#(h(X))
mark#(g(X))active#(g(X))

Rewrite Rules

active(g(X))mark(h(X))active(c)mark(d)
active(h(d))mark(g(c))mark(g(X))active(g(X))
mark(h(X))active(h(X))mark(c)active(c)
mark(d)active(d)g(mark(X))g(X)
g(active(X))g(X)h(mark(X))h(X)
h(active(X))h(X)

Original Signature

Termination of terms over the following signature is verified: g, d, c, active, mark, h

Strategy


Polynomial Interpretation

Improved Usable rules

h(mark(X))h(X)h(active(X))h(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(g(X))active#(g(X))

Problem 6: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

active#(g(X))mark#(h(X))mark#(h(X))active#(h(X))

Rewrite Rules

active(g(X))mark(h(X))active(c)mark(d)
active(h(d))mark(g(c))mark(g(X))active(g(X))
mark(h(X))active(h(X))mark(c)active(c)
mark(d)active(d)g(mark(X))g(X)
g(active(X))g(X)h(mark(X))h(X)
h(active(X))h(X)

Original Signature

Termination of terms over the following signature is verified: g, d, c, active, mark, h

Strategy


Polynomial Interpretation

Improved Usable rules

h(mark(X))h(X)h(active(X))h(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

active#(g(X))mark#(h(X))

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

mark#(h(X))active#(h(X))

Rewrite Rules

active(g(X))mark(h(X))active(c)mark(d)
active(h(d))mark(g(c))mark(g(X))active(g(X))
mark(h(X))active(h(X))mark(c)active(c)
mark(d)active(d)g(mark(X))g(X)
g(active(X))g(X)h(mark(X))h(X)
h(active(X))h(X)

Original Signature

Termination of terms over the following signature is verified: g, d, c, active, mark, h

Strategy


There are no SCCs!

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

h#(mark(X))h#(X)h#(active(X))h#(X)

Rewrite Rules

active(g(X))mark(h(X))active(c)mark(d)
active(h(d))mark(g(c))mark(g(X))active(g(X))
mark(h(X))active(h(X))mark(c)active(c)
mark(d)active(d)g(mark(X))g(X)
g(active(X))g(X)h(mark(X))h(X)
h(active(X))h(X)

Original Signature

Termination of terms over the following signature is verified: g, d, c, active, mark, h

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

h#(mark(X))h#(X)h#(active(X))h#(X)