TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60018 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1464ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (2ms), DependencyGraph (3ms), PolynomialLinearRange4iUR (3334ms), DependencyGraph (3ms), PolynomialLinearRange8NegiUR (10000ms), DependencyGraph (4ms), ReductionPairSAT (3813ms), DependencyGraph (4ms), ReductionPairSAT (3669ms), DependencyGraph (2ms), SizeChangePrinciple (timeout)].
 | – Problem 3 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 10 was processed with processor ReductionPairSAT (50ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 11 was processed with processor ReductionPairSAT (75ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (2ms).
 | – Problem 8 was processed with processor SubtermCriterion (0ms).
 | – Problem 9 was processed with processor SubtermCriterion (0ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, ok, mark, proper, from, sel, first, top, nil, cons


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

proper#(cons(X1, X2))proper#(X1)top#(ok(X))top#(active(X))
cons#(ok(X1), ok(X2))cons#(X1, X2)from#(ok(X))from#(X)
active#(first(s(X), cons(Y, Z)))cons#(Y, first(X, Z))active#(cons(X1, X2))cons#(active(X1), X2)
active#(sel(X1, X2))active#(X2)first#(mark(X1), X2)first#(X1, X2)
top#(mark(X))proper#(X)proper#(from(X))proper#(X)
active#(first(X1, X2))active#(X2)active#(sel(s(X), cons(Y, Z)))sel#(X, Z)
top#(mark(X))top#(proper(X))proper#(cons(X1, X2))proper#(X2)
proper#(first(X1, X2))first#(proper(X1), proper(X2))sel#(X1, mark(X2))sel#(X1, X2)
active#(first(X1, X2))active#(X1)proper#(first(X1, X2))proper#(X2)
active#(from(X))s#(X)proper#(s(X))proper#(X)
sel#(ok(X1), ok(X2))sel#(X1, X2)active#(cons(X1, X2))active#(X1)
sel#(mark(X1), X2)sel#(X1, X2)cons#(mark(X1), X2)cons#(X1, X2)
active#(from(X))from#(active(X))active#(first(X1, X2))first#(X1, active(X2))
from#(mark(X))from#(X)top#(ok(X))active#(X)
proper#(sel(X1, X2))sel#(proper(X1), proper(X2))active#(first(s(X), cons(Y, Z)))first#(X, Z)
active#(sel(X1, X2))active#(X1)active#(from(X))cons#(X, from(s(X)))
proper#(from(X))from#(proper(X))proper#(sel(X1, X2))proper#(X2)
first#(X1, mark(X2))first#(X1, X2)active#(sel(X1, X2))sel#(X1, active(X2))
active#(sel(X1, X2))sel#(active(X1), X2)active#(from(X))active#(X)
active#(s(X))s#(active(X))s#(ok(X))s#(X)
s#(mark(X))s#(X)proper#(sel(X1, X2))proper#(X1)
first#(ok(X1), ok(X2))first#(X1, X2)active#(first(X1, X2))first#(active(X1), X2)
proper#(cons(X1, X2))cons#(proper(X1), proper(X2))active#(s(X))active#(X)
proper#(s(X))s#(proper(X))proper#(first(X1, X2))proper#(X1)
active#(from(X))from#(s(X))

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, from, proper, first, sel, cons, nil, top

Strategy


The following SCCs where found

cons#(mark(X1), X2) → cons#(X1, X2)cons#(ok(X1), ok(X2)) → cons#(X1, X2)

sel#(mark(X1), X2) → sel#(X1, X2)sel#(ok(X1), ok(X2)) → sel#(X1, X2)
sel#(X1, mark(X2)) → sel#(X1, X2)

active#(first(X1, X2)) → active#(X2)active#(sel(X1, X2)) → active#(X2)
active#(s(X)) → active#(X)active#(from(X)) → active#(X)
active#(sel(X1, X2)) → active#(X1)active#(first(X1, X2)) → active#(X1)
active#(cons(X1, X2)) → active#(X1)

proper#(sel(X1, X2)) → proper#(X1)proper#(first(X1, X2)) → proper#(X2)
proper#(s(X)) → proper#(X)proper#(cons(X1, X2)) → proper#(X1)
proper#(cons(X1, X2)) → proper#(X2)proper#(first(X1, X2)) → proper#(X1)
proper#(sel(X1, X2)) → proper#(X2)proper#(from(X)) → proper#(X)

from#(mark(X)) → from#(X)from#(ok(X)) → from#(X)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

first#(ok(X1), ok(X2)) → first#(X1, X2)first#(mark(X1), X2) → first#(X1, X2)
first#(X1, mark(X2)) → first#(X1, X2)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

sel#(mark(X1), X2)sel#(X1, X2)sel#(ok(X1), ok(X2))sel#(X1, X2)
sel#(X1, mark(X2))sel#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, from, proper, first, sel, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

sel#(mark(X1), X2)sel#(X1, X2)sel#(ok(X1), ok(X2))sel#(X1, X2)

Problem 10: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

sel#(X1, mark(X2))sel#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, ok, mark, proper, from, sel, first, top, nil, cons

Strategy


Function Precedence

mark < sel# = from = 0 = s = active = ok = proper = first = sel = cons = nil = top

Argument Filtering

mark: 1
sel#: collapses to 2
from: collapses to 1
0: all arguments are removed from 0
s: all arguments are removed from s
active: all arguments are removed from active
ok: all arguments are removed from ok
proper: collapses to 1
first: 1 2
sel: all arguments are removed from sel
cons: 1 2
nil: all arguments are removed from nil
top: collapses to 1

Status

mark: multiset
0: multiset
s: multiset
active: multiset
ok: multiset
first: lexicographic with permutation 1 → 1 2 → 2
sel: multiset
cons: lexicographic with permutation 1 → 1 2 → 2
nil: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

sel#(X1, mark(X2)) → sel#(X1, X2)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

first#(ok(X1), ok(X2))first#(X1, X2)first#(mark(X1), X2)first#(X1, X2)
first#(X1, mark(X2))first#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, from, proper, first, sel, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

first#(ok(X1), ok(X2))first#(X1, X2)first#(mark(X1), X2)first#(X1, X2)

Problem 11: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

first#(X1, mark(X2))first#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, ok, mark, proper, from, sel, first, top, nil, cons

Strategy


Function Precedence

mark = from = first# = 0 = s = active = ok = proper = first = sel = cons = nil = top

Argument Filtering

mark: 1
from: collapses to 1
first#: 2
0: all arguments are removed from 0
s: all arguments are removed from s
active: collapses to 1
ok: all arguments are removed from ok
proper: collapses to 1
first: collapses to 1
sel: collapses to 1
cons: all arguments are removed from cons
nil: all arguments are removed from nil
top: all arguments are removed from top

Status

mark: multiset
first#: lexicographic with permutation 2 → 1
0: multiset
s: multiset
ok: multiset
cons: multiset
nil: multiset
top: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

first#(X1, mark(X2)) → first#(X1, X2)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(first(X1, X2))active#(X2)active#(sel(X1, X2))active#(X2)
active#(s(X))active#(X)active#(from(X))active#(X)
active#(sel(X1, X2))active#(X1)active#(first(X1, X2))active#(X1)
active#(cons(X1, X2))active#(X1)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, from, proper, first, sel, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(first(X1, X2))active#(X2)active#(sel(X1, X2))active#(X2)
active#(sel(X1, X2))active#(X1)active#(s(X))active#(X)
active#(from(X))active#(X)active#(first(X1, X2))active#(X1)
active#(cons(X1, X2))active#(X1)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

from#(mark(X))from#(X)from#(ok(X))from#(X)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, from, proper, first, sel, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

from#(mark(X))from#(X)from#(ok(X))from#(X)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(sel(X1, X2))proper#(X1)proper#(first(X1, X2))proper#(X2)
proper#(s(X))proper#(X)proper#(cons(X1, X2))proper#(X1)
proper#(cons(X1, X2))proper#(X2)proper#(first(X1, X2))proper#(X1)
proper#(sel(X1, X2))proper#(X2)proper#(from(X))proper#(X)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, from, proper, first, sel, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(first(X1, X2))proper#(X2)proper#(sel(X1, X2))proper#(X1)
proper#(s(X))proper#(X)proper#(cons(X1, X2))proper#(X1)
proper#(cons(X1, X2))proper#(X2)proper#(first(X1, X2))proper#(X1)
proper#(sel(X1, X2))proper#(X2)proper#(from(X))proper#(X)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, from, proper, first, sel, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(first(0, Z))mark(nil)
active(first(s(X), cons(Y, Z)))mark(cons(Y, first(X, Z)))active(sel(0, cons(X, Z)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(from(X))from(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(s(X))s(active(X))
active(first(X1, X2))first(active(X1), X2)active(first(X1, X2))first(X1, active(X2))
active(sel(X1, X2))sel(active(X1), X2)active(sel(X1, X2))sel(X1, active(X2))
from(mark(X))mark(from(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))first(mark(X1), X2)mark(first(X1, X2))
first(X1, mark(X2))mark(first(X1, X2))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(from(X))from(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(first(X1, X2))first(proper(X1), proper(X2))proper(0)ok(0)
proper(nil)ok(nil)proper(sel(X1, X2))sel(proper(X1), proper(X2))
from(ok(X))ok(from(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))first(ok(X1), ok(X2))ok(first(X1, X2))
sel(ok(X1), ok(X2))ok(sel(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, from, proper, first, sel, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)