TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60000 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1755ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (4ms), PolynomialLinearRange4iUR (3333ms), DependencyGraph (2ms), PolynomialLinearRange8NegiUR (10000ms), DependencyGraph (5ms), ReductionPairSAT (4107ms), DependencyGraph (28ms), ReductionPairSAT (3944ms), DependencyGraph (5ms), SizeChangePrinciple (timeout)].
 | – Problem 4 was processed with processor SubtermCriterion (3ms).
 |    | – Problem 10 was processed with processor ReductionPairSAT (34ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 11 was processed with processor ReductionPairSAT (64ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 9 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 3

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

active#(diff(X, Y))leq#(X, Y)top#(ok(X))top#(active(X))
proper#(p(X))proper#(X)active#(if(X1, X2, X3))active#(X1)
active#(p(X))p#(active(X))proper#(p(X))p#(proper(X))
top#(mark(X))proper#(X)active#(diff(X, Y))p#(X)
top#(mark(X))top#(proper(X))leq#(X1, mark(X2))leq#(X1, X2)
active#(leq(X1, X2))leq#(active(X1), X2)active#(p(X))active#(X)
proper#(s(X))proper#(X)active#(diff(X1, X2))diff#(X1, active(X2))
if#(mark(X1), X2, X3)if#(X1, X2, X3)proper#(leq(X1, X2))proper#(X2)
active#(diff(X, Y))if#(leq(X, Y), 0, s(diff(p(X), Y)))active#(diff(X, Y))s#(diff(p(X), Y))
proper#(diff(X1, X2))proper#(X2)leq#(mark(X1), X2)leq#(X1, X2)
active#(diff(X1, X2))active#(X2)p#(mark(X))p#(X)
top#(ok(X))active#(X)leq#(ok(X1), ok(X2))leq#(X1, X2)
proper#(leq(X1, X2))leq#(proper(X1), proper(X2))active#(leq(s(X), s(Y)))leq#(X, Y)
active#(diff(X1, X2))active#(X1)proper#(diff(X1, X2))diff#(proper(X1), proper(X2))
active#(diff(X, Y))diff#(p(X), Y)if#(ok(X1), ok(X2), ok(X3))if#(X1, X2, X3)
active#(diff(X1, X2))diff#(active(X1), X2)active#(leq(X1, X2))leq#(X1, active(X2))
active#(leq(X1, X2))active#(X1)proper#(leq(X1, X2))proper#(X1)
proper#(if(X1, X2, X3))proper#(X1)diff#(ok(X1), ok(X2))diff#(X1, X2)
proper#(if(X1, X2, X3))proper#(X2)diff#(mark(X1), X2)diff#(X1, X2)
diff#(X1, mark(X2))diff#(X1, X2)active#(s(X))s#(active(X))
active#(leq(X1, X2))active#(X2)s#(ok(X))s#(X)
s#(mark(X))s#(X)active#(s(X))active#(X)
proper#(s(X))s#(proper(X))proper#(if(X1, X2, X3))proper#(X3)
proper#(diff(X1, X2))proper#(X1)active#(if(X1, X2, X3))if#(active(X1), X2, X3)
p#(ok(X))p#(X)proper#(if(X1, X2, X3))if#(proper(X1), proper(X2), proper(X3))

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top

Strategy


The following SCCs where found

p#(ok(X)) → p#(X)p#(mark(X)) → p#(X)

leq#(ok(X1), ok(X2)) → leq#(X1, X2)leq#(mark(X1), X2) → leq#(X1, X2)
leq#(X1, mark(X2)) → leq#(X1, X2)

diff#(ok(X1), ok(X2)) → diff#(X1, X2)diff#(mark(X1), X2) → diff#(X1, X2)
diff#(X1, mark(X2)) → diff#(X1, X2)

if#(mark(X1), X2, X3) → if#(X1, X2, X3)if#(ok(X1), ok(X2), ok(X3)) → if#(X1, X2, X3)

proper#(s(X)) → proper#(X)proper#(leq(X1, X2)) → proper#(X1)
proper#(if(X1, X2, X3)) → proper#(X1)proper#(if(X1, X2, X3)) → proper#(X2)
proper#(if(X1, X2, X3)) → proper#(X3)proper#(diff(X1, X2)) → proper#(X1)
proper#(leq(X1, X2)) → proper#(X2)proper#(p(X)) → proper#(X)
proper#(diff(X1, X2)) → proper#(X2)

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

active#(if(X1, X2, X3)) → active#(X1)active#(leq(X1, X2)) → active#(X1)
active#(diff(X1, X2)) → active#(X2)active#(s(X)) → active#(X)
active#(p(X)) → active#(X)active#(diff(X1, X2)) → active#(X1)
active#(leq(X1, X2)) → active#(X2)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

p#(ok(X))p#(X)p#(mark(X))p#(X)

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

p#(ok(X))p#(X)p#(mark(X))p#(X)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

diff#(ok(X1), ok(X2))diff#(X1, X2)diff#(mark(X1), X2)diff#(X1, X2)
diff#(X1, mark(X2))diff#(X1, X2)

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

diff#(ok(X1), ok(X2))diff#(X1, X2)diff#(mark(X1), X2)diff#(X1, X2)

Problem 10: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

diff#(X1, mark(X2))diff#(X1, X2)

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top

Strategy


Function Precedence

diff# = diff = leq = true = mark = 0 = s = if = p = false = active = ok = proper = top

Argument Filtering

diff#: 2
diff: all arguments are removed from diff
leq: 2
true: all arguments are removed from true
mark: 1
0: all arguments are removed from 0
s: collapses to 1
if: all arguments are removed from if
p: collapses to 1
false: all arguments are removed from false
active: all arguments are removed from active
ok: all arguments are removed from ok
proper: collapses to 1
top: all arguments are removed from top

Status

diff#: multiset
diff: multiset
leq: lexicographic with permutation 2 → 1
true: multiset
mark: multiset
0: multiset
if: multiset
false: multiset
active: multiset
ok: multiset
top: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

diff#(X1, mark(X2)) → diff#(X1, X2)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

leq#(ok(X1), ok(X2))leq#(X1, X2)leq#(mark(X1), X2)leq#(X1, X2)
leq#(X1, mark(X2))leq#(X1, X2)

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

leq#(ok(X1), ok(X2))leq#(X1, X2)leq#(mark(X1), X2)leq#(X1, X2)

Problem 11: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

leq#(X1, mark(X2))leq#(X1, X2)

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top

Strategy


Function Precedence

mark < leq# = diff = leq = true = 0 = s = if = p = false = active = ok = proper = top

Argument Filtering

leq#: collapses to 2
diff: collapses to 1
leq: collapses to 2
true: all arguments are removed from true
mark: 1
0: all arguments are removed from 0
s: all arguments are removed from s
if: all arguments are removed from if
p: collapses to 1
false: all arguments are removed from false
active: all arguments are removed from active
ok: all arguments are removed from ok
proper: collapses to 1
top: all arguments are removed from top

Status

true: multiset
mark: multiset
0: multiset
s: multiset
if: multiset
false: multiset
active: multiset
ok: multiset
top: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

leq#(X1, mark(X2)) → leq#(X1, X2)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

if#(mark(X1), X2, X3)if#(X1, X2, X3)if#(ok(X1), ok(X2), ok(X3))if#(X1, X2, X3)

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

if#(mark(X1), X2, X3)if#(X1, X2, X3)if#(ok(X1), ok(X2), ok(X3))if#(X1, X2, X3)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(if(X1, X2, X3))active#(X1)active#(leq(X1, X2))active#(X1)
active#(diff(X1, X2))active#(X2)active#(s(X))active#(X)
active#(p(X))active#(X)active#(diff(X1, X2))active#(X1)
active#(leq(X1, X2))active#(X2)

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(if(X1, X2, X3))active#(X1)active#(leq(X1, X2))active#(X1)
active#(diff(X1, X2))active#(X2)active#(s(X))active#(X)
active#(p(X))active#(X)active#(diff(X1, X2))active#(X1)
active#(leq(X1, X2))active#(X2)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(s(X))proper#(X)proper#(leq(X1, X2))proper#(X1)
proper#(if(X1, X2, X3))proper#(X1)proper#(if(X1, X2, X3))proper#(X2)
proper#(if(X1, X2, X3))proper#(X3)proper#(diff(X1, X2))proper#(X1)
proper#(leq(X1, X2))proper#(X2)proper#(p(X))proper#(X)
proper#(diff(X1, X2))proper#(X2)

Rewrite Rules

active(p(0))mark(0)active(p(s(X)))mark(X)
active(leq(0, Y))mark(true)active(leq(s(X), 0))mark(false)
active(leq(s(X), s(Y)))mark(leq(X, Y))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(diff(X, Y))mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X))p(active(X))active(s(X))s(active(X))
active(leq(X1, X2))leq(active(X1), X2)active(leq(X1, X2))leq(X1, active(X2))
active(if(X1, X2, X3))if(active(X1), X2, X3)active(diff(X1, X2))diff(active(X1), X2)
active(diff(X1, X2))diff(X1, active(X2))p(mark(X))mark(p(X))
s(mark(X))mark(s(X))leq(mark(X1), X2)mark(leq(X1, X2))
leq(X1, mark(X2))mark(leq(X1, X2))if(mark(X1), X2, X3)mark(if(X1, X2, X3))
diff(mark(X1), X2)mark(diff(X1, X2))diff(X1, mark(X2))mark(diff(X1, X2))
proper(p(X))p(proper(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(leq(X1, X2))leq(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))proper(diff(X1, X2))diff(proper(X1), proper(X2))
p(ok(X))ok(p(X))s(ok(X))ok(s(X))
leq(ok(X1), ok(X2))ok(leq(X1, X2))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
diff(ok(X1), ok(X2))ok(diff(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: diff, leq, true, mark, 0, s, if, p, active, false, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(s(X))proper#(X)proper#(leq(X1, X2))proper#(X1)
proper#(if(X1, X2, X3))proper#(X1)proper#(if(X1, X2, X3))proper#(X2)
proper#(if(X1, X2, X3))proper#(X3)proper#(diff(X1, X2))proper#(X1)
proper#(leq(X1, X2))proper#(X2)proper#(p(X))proper#(X)
proper#(diff(X1, X2))proper#(X2)