TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60002 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (159ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (1ms), PolynomialLinearRange4iUR (1225ms), DependencyGraph (1ms), PolynomialLinearRange8NegiUR (15000ms), DependencyGraph (1ms), ReductionPairSAT (1464ms), DependencyGraph (1ms), SizeChangePrinciple (2966ms)].
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (32ms), PolynomialLinearRange4iUR (1104ms), DependencyGraph (31ms), PolynomialLinearRange8NegiUR (1ms), DependencyGraph (31ms), ReductionPairSAT (1650ms), DependencyGraph (27ms), SizeChangePrinciple (timeout)].

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

eq#(n__s(X), n__s(Y))eq#(activate(X), activate(Y))

Rewrite Rules

eq(n__0, n__0)trueeq(n__s(X), n__s(Y))eq(activate(X), activate(Y))
eq(X, Y)falseinf(X)cons(X, n__inf(n__s(X)))
take(0, X)niltake(s(X), cons(Y, L))cons(activate(Y), n__take(activate(X), activate(L)))
length(nil)0length(cons(X, L))s(n__length(activate(L)))
0n__0s(X)n__s(X)
inf(X)n__inf(X)take(X1, X2)n__take(X1, X2)
length(X)n__length(X)activate(n__0)0
activate(n__s(X))s(X)activate(n__inf(X))inf(activate(X))
activate(n__take(X1, X2))take(activate(X1), activate(X2))activate(n__length(X))length(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__inf, n__length, inf, true, n__take, activate, n__s, n__0, 0, s, take, length, false, eq, cons, nil




Open Dependency Pair Problem 3

Dependency Pairs

take#(s(X), cons(Y, L))activate#(X)length#(cons(X, L))activate#(L)
activate#(n__length(X))activate#(X)activate#(n__take(X1, X2))activate#(X1)
take#(s(X), cons(Y, L))activate#(Y)activate#(n__take(X1, X2))activate#(X2)
activate#(n__inf(X))activate#(X)activate#(n__take(X1, X2))take#(activate(X1), activate(X2))
activate#(n__length(X))length#(activate(X))take#(s(X), cons(Y, L))activate#(L)

Rewrite Rules

eq(n__0, n__0)trueeq(n__s(X), n__s(Y))eq(activate(X), activate(Y))
eq(X, Y)falseinf(X)cons(X, n__inf(n__s(X)))
take(0, X)niltake(s(X), cons(Y, L))cons(activate(Y), n__take(activate(X), activate(L)))
length(nil)0length(cons(X, L))s(n__length(activate(L)))
0n__0s(X)n__s(X)
inf(X)n__inf(X)take(X1, X2)n__take(X1, X2)
length(X)n__length(X)activate(n__0)0
activate(n__s(X))s(X)activate(n__inf(X))inf(activate(X))
activate(n__take(X1, X2))take(activate(X1), activate(X2))activate(n__length(X))length(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__inf, n__length, inf, true, n__take, activate, n__s, n__0, 0, s, take, length, false, eq, cons, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

activate#(n__inf(X))inf#(activate(X))take#(s(X), cons(Y, L))activate#(X)
length#(cons(X, L))activate#(L)activate#(n__length(X))activate#(X)
take#(s(X), cons(Y, L))activate#(Y)eq#(n__s(X), n__s(Y))activate#(Y)
length#(cons(X, L))s#(n__length(activate(L)))activate#(n__take(X1, X2))take#(activate(X1), activate(X2))
activate#(n__inf(X))activate#(X)activate#(n__length(X))length#(activate(X))
take#(s(X), cons(Y, L))activate#(L)activate#(n__s(X))s#(X)
activate#(n__take(X1, X2))activate#(X1)eq#(n__s(X), n__s(Y))activate#(X)
eq#(n__s(X), n__s(Y))eq#(activate(X), activate(Y))activate#(n__0)0#
activate#(n__take(X1, X2))activate#(X2)length#(nil)0#

Rewrite Rules

eq(n__0, n__0)trueeq(n__s(X), n__s(Y))eq(activate(X), activate(Y))
eq(X, Y)falseinf(X)cons(X, n__inf(n__s(X)))
take(0, X)niltake(s(X), cons(Y, L))cons(activate(Y), n__take(activate(X), activate(L)))
length(nil)0length(cons(X, L))s(n__length(activate(L)))
0n__0s(X)n__s(X)
inf(X)n__inf(X)take(X1, X2)n__take(X1, X2)
length(X)n__length(X)activate(n__0)0
activate(n__s(X))s(X)activate(n__inf(X))inf(activate(X))
activate(n__take(X1, X2))take(activate(X1), activate(X2))activate(n__length(X))length(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__inf, n__length, inf, true, n__take, activate, n__s, n__0, 0, s, take, length, false, nil, cons, eq

Strategy


The following SCCs where found

eq#(n__s(X), n__s(Y)) → eq#(activate(X), activate(Y))

take#(s(X), cons(Y, L)) → activate#(X)length#(cons(X, L)) → activate#(L)
activate#(n__length(X)) → activate#(X)activate#(n__take(X1, X2)) → activate#(X1)
take#(s(X), cons(Y, L)) → activate#(Y)activate#(n__take(X1, X2)) → activate#(X2)
activate#(n__take(X1, X2)) → take#(activate(X1), activate(X2))activate#(n__inf(X)) → activate#(X)
activate#(n__length(X)) → length#(activate(X))take#(s(X), cons(Y, L)) → activate#(L)