TIMEOUT
The TRS could not be proven terminating. The proof attempt took 60001 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (1189ms).
| Problem 2 was processed with processor SubtermCriterion (4ms).
| Problem 3 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (3ms), PolynomialLinearRange4iUR (3805ms), DependencyGraph (2ms), PolynomialLinearRange4iUR (3208ms), DependencyGraph (3ms), PolynomialLinearRange8NegiUR (30037ms), DependencyGraph (timeout), ReductionPairSAT (4828ms), DependencyGraph (4ms), SizeChangePrinciple (timeout)].
| Problem 4 was processed with processor SubtermCriterion (1ms).
| Problem 5 was processed with processor SubtermCriterion (1ms).
| | Problem 11 was processed with processor PolynomialLinearRange4iUR (45ms).
| Problem 6 was processed with processor SubtermCriterion (0ms).
| Problem 7 was processed with processor SubtermCriterion (0ms).
| Problem 8 was processed with processor SubtermCriterion (1ms).
| Problem 9 was processed with processor SubtermCriterion (1ms).
| Problem 10 was processed with processor SubtermCriterion (3ms).
The following open problems remain:
Open Dependency Pair Problem 3
Dependency Pairs
top#(mark(X)) | → | top#(proper(X)) | | top#(ok(X)) | → | top#(active(X)) |
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, top, eq, cons, nil
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
take#(mark(X1), X2) | → | take#(X1, X2) | | proper#(cons(X1, X2)) | → | proper#(X1) |
proper#(length(X)) | → | length#(proper(X)) | | top#(ok(X)) | → | top#(active(X)) |
proper#(inf(X)) | → | proper#(X) | | cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) |
active#(eq(s(X), s(Y))) | → | eq#(X, Y) | | top#(ok(X)) | → | active#(X) |
active#(take(X1, X2)) | → | take#(active(X1), X2) | | active#(inf(X)) | → | s#(X) |
inf#(ok(X)) | → | inf#(X) | | active#(inf(X)) | → | active#(X) |
proper#(take(X1, X2)) | → | proper#(X1) | | active#(take(s(X), cons(Y, L))) | → | take#(X, L) |
length#(ok(X)) | → | length#(X) | | take#(ok(X1), ok(X2)) | → | take#(X1, X2) |
top#(mark(X)) | → | proper#(X) | | length#(mark(X)) | → | length#(X) |
top#(mark(X)) | → | top#(proper(X)) | | active#(inf(X)) | → | inf#(s(X)) |
active#(length(X)) | → | length#(active(X)) | | proper#(cons(X1, X2)) | → | proper#(X2) |
active#(length(cons(X, L))) | → | s#(length(L)) | | active#(take(X1, X2)) | → | active#(X2) |
active#(length(X)) | → | active#(X) | | active#(take(X1, X2)) | → | active#(X1) |
proper#(take(X1, X2)) | → | proper#(X2) | | proper#(eq(X1, X2)) | → | eq#(proper(X1), proper(X2)) |
take#(X1, mark(X2)) | → | take#(X1, X2) | | active#(length(cons(X, L))) | → | length#(L) |
proper#(eq(X1, X2)) | → | proper#(X2) | | s#(ok(X)) | → | s#(X) |
active#(take(s(X), cons(Y, L))) | → | cons#(Y, take(X, L)) | | proper#(s(X)) | → | proper#(X) |
proper#(length(X)) | → | proper#(X) | | proper#(cons(X1, X2)) | → | cons#(proper(X1), proper(X2)) |
active#(inf(X)) | → | inf#(active(X)) | | active#(take(X1, X2)) | → | take#(X1, active(X2)) |
proper#(s(X)) | → | s#(proper(X)) | | proper#(eq(X1, X2)) | → | proper#(X1) |
proper#(take(X1, X2)) | → | take#(proper(X1), proper(X2)) | | active#(inf(X)) | → | cons#(X, inf(s(X))) |
proper#(inf(X)) | → | inf#(proper(X)) | | eq#(ok(X1), ok(X2)) | → | eq#(X1, X2) |
inf#(mark(X)) | → | inf#(X) |
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, nil, cons, top, eq
Strategy
The following SCCs where found
length#(mark(X)) → length#(X) | length#(ok(X)) → length#(X) |
inf#(ok(X)) → inf#(X) | inf#(mark(X)) → inf#(X) |
eq#(ok(X1), ok(X2)) → eq#(X1, X2) |
cons#(ok(X1), ok(X2)) → cons#(X1, X2) |
take#(mark(X1), X2) → take#(X1, X2) | take#(X1, mark(X2)) → take#(X1, X2) |
take#(ok(X1), ok(X2)) → take#(X1, X2) |
proper#(length(X)) → proper#(X) | proper#(s(X)) → proper#(X) |
proper#(cons(X1, X2)) → proper#(X1) | proper#(cons(X1, X2)) → proper#(X2) |
proper#(take(X1, X2)) → proper#(X1) | proper#(eq(X1, X2)) → proper#(X1) |
proper#(take(X1, X2)) → proper#(X2) | proper#(inf(X)) → proper#(X) |
proper#(eq(X1, X2)) → proper#(X2) |
top#(mark(X)) → top#(proper(X)) | top#(ok(X)) → top#(active(X)) |
active#(inf(X)) → active#(X) | active#(take(X1, X2)) → active#(X2) |
active#(take(X1, X2)) → active#(X1) | active#(length(X)) → active#(X) |
Problem 2: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) |
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, nil, cons, top, eq
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) |
Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
length#(mark(X)) | → | length#(X) | | length#(ok(X)) | → | length#(X) |
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, nil, cons, top, eq
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
length#(mark(X)) | → | length#(X) | | length#(ok(X)) | → | length#(X) |
Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
take#(mark(X1), X2) | → | take#(X1, X2) | | take#(X1, mark(X2)) | → | take#(X1, X2) |
take#(ok(X1), ok(X2)) | → | take#(X1, X2) |
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, nil, cons, top, eq
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
take#(mark(X1), X2) | → | take#(X1, X2) | | take#(ok(X1), ok(X2)) | → | take#(X1, X2) |
Problem 11: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
take#(X1, mark(X2)) | → | take#(X1, X2) |
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, eq, top, nil, cons
Strategy
Polynomial Interpretation
- 0: 0
- active(x): 0
- cons(x,y): 0
- eq(x,y): 0
- false: 0
- inf(x): 0
- length(x): 0
- mark(x): x + 2
- nil: 0
- ok(x): 0
- proper(x): 0
- s(x): 0
- take(x,y): 0
- take#(x,y): y + x
- top(x): 0
- true: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
take#(X1, mark(X2)) | → | take#(X1, X2) |
Problem 6: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
inf#(ok(X)) | → | inf#(X) | | inf#(mark(X)) | → | inf#(X) |
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, nil, cons, top, eq
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
inf#(ok(X)) | → | inf#(X) | | inf#(mark(X)) | → | inf#(X) |
Problem 7: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
eq#(ok(X1), ok(X2)) | → | eq#(X1, X2) |
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, nil, cons, top, eq
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
eq#(ok(X1), ok(X2)) | → | eq#(X1, X2) |
Problem 8: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, nil, cons, top, eq
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
Problem 9: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
active#(inf(X)) | → | active#(X) | | active#(take(X1, X2)) | → | active#(X2) |
active#(take(X1, X2)) | → | active#(X1) | | active#(length(X)) | → | active#(X) |
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, nil, cons, top, eq
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
active#(inf(X)) | → | active#(X) | | active#(take(X1, X2)) | → | active#(X2) |
active#(length(X)) | → | active#(X) | | active#(take(X1, X2)) | → | active#(X1) |
Problem 10: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
proper#(length(X)) | → | proper#(X) | | proper#(s(X)) | → | proper#(X) |
proper#(cons(X1, X2)) | → | proper#(X1) | | proper#(cons(X1, X2)) | → | proper#(X2) |
proper#(take(X1, X2)) | → | proper#(X1) | | proper#(eq(X1, X2)) | → | proper#(X1) |
proper#(take(X1, X2)) | → | proper#(X2) | | proper#(inf(X)) | → | proper#(X) |
proper#(eq(X1, X2)) | → | proper#(X2) |
Rewrite Rules
active(eq(0, 0)) | → | mark(true) | | active(eq(s(X), s(Y))) | → | mark(eq(X, Y)) |
active(eq(X, Y)) | → | mark(false) | | active(inf(X)) | → | mark(cons(X, inf(s(X)))) |
active(take(0, X)) | → | mark(nil) | | active(take(s(X), cons(Y, L))) | → | mark(cons(Y, take(X, L))) |
active(length(nil)) | → | mark(0) | | active(length(cons(X, L))) | → | mark(s(length(L))) |
active(inf(X)) | → | inf(active(X)) | | active(take(X1, X2)) | → | take(active(X1), X2) |
active(take(X1, X2)) | → | take(X1, active(X2)) | | active(length(X)) | → | length(active(X)) |
inf(mark(X)) | → | mark(inf(X)) | | take(mark(X1), X2) | → | mark(take(X1, X2)) |
take(X1, mark(X2)) | → | mark(take(X1, X2)) | | length(mark(X)) | → | mark(length(X)) |
proper(eq(X1, X2)) | → | eq(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
proper(true) | → | ok(true) | | proper(s(X)) | → | s(proper(X)) |
proper(false) | → | ok(false) | | proper(inf(X)) | → | inf(proper(X)) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |
proper(nil) | → | ok(nil) | | proper(length(X)) | → | length(proper(X)) |
eq(ok(X1), ok(X2)) | → | ok(eq(X1, X2)) | | s(ok(X)) | → | ok(s(X)) |
inf(ok(X)) | → | ok(inf(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | | length(ok(X)) | → | ok(length(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, length, active, false, ok, proper, nil, cons, top, eq
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
proper#(s(X)) | → | proper#(X) | | proper#(length(X)) | → | proper#(X) |
proper#(cons(X1, X2)) | → | proper#(X1) | | proper#(cons(X1, X2)) | → | proper#(X2) |
proper#(take(X1, X2)) | → | proper#(X1) | | proper#(eq(X1, X2)) | → | proper#(X1) |
proper#(take(X1, X2)) | → | proper#(X2) | | proper#(inf(X)) | → | proper#(X) |
proper#(eq(X1, X2)) | → | proper#(X2) |