YES
The TRS could be proven terminating. The proof took 17 ms.
Problem 1 was processed with processor DependencyGraph (6ms).
from#(X) | → | cons#(X, n__from(s(X))) | 2nd#(cons(X, n__cons(Y, Z))) | → | activate#(Y) | |
activate#(n__from(X)) | → | from#(X) | activate#(n__cons(X1, X2)) | → | cons#(X1, X2) |
2nd(cons(X, n__cons(Y, Z))) | → | activate(Y) | from(X) | → | cons(X, n__from(s(X))) | |
cons(X1, X2) | → | n__cons(X1, X2) | from(X) | → | n__from(X) | |
activate(n__cons(X1, X2)) | → | cons(X1, X2) | activate(n__from(X)) | → | from(X) | |
activate(X) | → | X |
Termination of terms over the following signature is verified: activate, 2nd, n__cons, s, n__from, from, cons