YES
The TRS could be proven terminating. The proof took 60000 ms.
Problem 1 was processed with processor DependencyGraph (33ms). | Problem 2 was processed with processor SubtermCriterion (4ms).
activate#(n__cons(X1, X2)) | → | cons#(activate(X1), X2) | activate#(n__cons(X1, X2)) | → | activate#(X1) | |
from#(X) | → | cons#(X, n__from(n__s(X))) | activate#(n__from(X)) | → | from#(activate(X)) | |
activate#(n__s(X)) | → | activate#(X) | activate#(n__from(X)) | → | activate#(X) | |
2nd#(cons(X, n__cons(Y, Z))) | → | activate#(Y) | activate#(n__s(X)) | → | s#(activate(X)) |
2nd(cons(X, n__cons(Y, Z))) | → | activate(Y) | from(X) | → | cons(X, n__from(n__s(X))) | |
cons(X1, X2) | → | n__cons(X1, X2) | from(X) | → | n__from(X) | |
s(X) | → | n__s(X) | activate(n__cons(X1, X2)) | → | cons(activate(X1), X2) | |
activate(n__from(X)) | → | from(activate(X)) | activate(n__s(X)) | → | s(activate(X)) | |
activate(X) | → | X |
Termination of terms over the following signature is verified: activate, 2nd, n__s, n__cons, n__from, s, from, cons
activate#(n__cons(X1, X2)) → activate#(X1) | activate#(n__s(X)) → activate#(X) |
activate#(n__from(X)) → activate#(X) |
activate#(n__cons(X1, X2)) | → | activate#(X1) | activate#(n__s(X)) | → | activate#(X) | |
activate#(n__from(X)) | → | activate#(X) |
2nd(cons(X, n__cons(Y, Z))) | → | activate(Y) | from(X) | → | cons(X, n__from(n__s(X))) | |
cons(X1, X2) | → | n__cons(X1, X2) | from(X) | → | n__from(X) | |
s(X) | → | n__s(X) | activate(n__cons(X1, X2)) | → | cons(activate(X1), X2) | |
activate(n__from(X)) | → | from(activate(X)) | activate(n__s(X)) | → | s(activate(X)) | |
activate(X) | → | X |
Termination of terms over the following signature is verified: activate, 2nd, n__s, n__cons, n__from, s, from, cons
The following projection was used:
Thus, the following dependency pairs are removed:
activate#(n__cons(X1, X2)) | → | activate#(X1) | activate#(n__s(X)) | → | activate#(X) | |
activate#(n__from(X)) | → | activate#(X) |