YES

The TRS could be proven terminating. The proof took 60000 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (33ms).
 | – Problem 2 was processed with processor SubtermCriterion (4ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

activate#(n__cons(X1, X2))cons#(activate(X1), X2)activate#(n__cons(X1, X2))activate#(X1)
from#(X)cons#(X, n__from(n__s(X)))activate#(n__from(X))from#(activate(X))
activate#(n__s(X))activate#(X)activate#(n__from(X))activate#(X)
2nd#(cons(X, n__cons(Y, Z)))activate#(Y)activate#(n__s(X))s#(activate(X))

Rewrite Rules

2nd(cons(X, n__cons(Y, Z)))activate(Y)from(X)cons(X, n__from(n__s(X)))
cons(X1, X2)n__cons(X1, X2)from(X)n__from(X)
s(X)n__s(X)activate(n__cons(X1, X2))cons(activate(X1), X2)
activate(n__from(X))from(activate(X))activate(n__s(X))s(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: activate, 2nd, n__s, n__cons, n__from, s, from, cons

Strategy


The following SCCs where found

activate#(n__cons(X1, X2)) → activate#(X1)activate#(n__s(X)) → activate#(X)
activate#(n__from(X)) → activate#(X)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

activate#(n__cons(X1, X2))activate#(X1)activate#(n__s(X))activate#(X)
activate#(n__from(X))activate#(X)

Rewrite Rules

2nd(cons(X, n__cons(Y, Z)))activate(Y)from(X)cons(X, n__from(n__s(X)))
cons(X1, X2)n__cons(X1, X2)from(X)n__from(X)
s(X)n__s(X)activate(n__cons(X1, X2))cons(activate(X1), X2)
activate(n__from(X))from(activate(X))activate(n__s(X))s(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: activate, 2nd, n__s, n__cons, n__from, s, from, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

activate#(n__cons(X1, X2))activate#(X1)activate#(n__s(X))activate#(X)
activate#(n__from(X))activate#(X)