YES

The TRS could be proven terminating. The proof took 198 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (173ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (2ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor SubtermCriterion (2ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

activate#(n__s(X))activate#(X)activate#(n__from(X))activate#(X)
2ndsneg#(s(N), cons(X, n__cons(Y, Z)))2ndspos#(N, activate(Z))pi#(X)2ndspos#(X, from(0))
2ndspos#(s(N), cons(X, n__cons(Y, Z)))activate#(Z)pi#(X)from#(0)
times#(s(X), Y)plus#(Y, times(X, Y))times#(s(X), Y)times#(X, Y)
activate#(n__cons(X1, X2))cons#(activate(X1), X2)square#(X)times#(X, X)
activate#(n__cons(X1, X2))activate#(X1)2ndsneg#(s(N), cons(X, n__cons(Y, Z)))activate#(Z)
from#(X)cons#(X, n__from(n__s(X)))2ndspos#(s(N), cons(X, n__cons(Y, Z)))2ndsneg#(N, activate(Z))
plus#(s(X), Y)s#(plus(X, Y))2ndspos#(s(N), cons(X, n__cons(Y, Z)))activate#(Y)
activate#(n__from(X))from#(activate(X))plus#(s(X), Y)plus#(X, Y)
activate#(n__s(X))s#(activate(X))2ndsneg#(s(N), cons(X, n__cons(Y, Z)))activate#(Y)

Rewrite Rules

from(X)cons(X, n__from(n__s(X)))2ndspos(0, Z)rnil
2ndspos(s(N), cons(X, n__cons(Y, Z)))rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))2ndsneg(0, Z)rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z)))rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))pi(X)2ndspos(X, from(0))
plus(0, Y)Yplus(s(X), Y)s(plus(X, Y))
times(0, Y)0times(s(X), Y)plus(Y, times(X, Y))
square(X)times(X, X)from(X)n__from(X)
s(X)n__s(X)cons(X1, X2)n__cons(X1, X2)
activate(n__from(X))from(activate(X))activate(n__s(X))s(activate(X))
activate(n__cons(X1, X2))cons(activate(X1), X2)activate(X)X

Original Signature

Termination of terms over the following signature is verified: plus, negrecip, posrecip, n__from, rnil, from, rcons, n__s, activate, n__cons, 2ndspos, 0, s, 2ndsneg, times, square, pi, cons

Strategy


The following SCCs where found

plus#(s(X), Y) → plus#(X, Y)

activate#(n__cons(X1, X2)) → activate#(X1)activate#(n__s(X)) → activate#(X)
activate#(n__from(X)) → activate#(X)

2ndspos#(s(N), cons(X, n__cons(Y, Z))) → 2ndsneg#(N, activate(Z))2ndsneg#(s(N), cons(X, n__cons(Y, Z))) → 2ndspos#(N, activate(Z))

times#(s(X), Y) → times#(X, Y)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

times#(s(X), Y)times#(X, Y)

Rewrite Rules

from(X)cons(X, n__from(n__s(X)))2ndspos(0, Z)rnil
2ndspos(s(N), cons(X, n__cons(Y, Z)))rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))2ndsneg(0, Z)rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z)))rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))pi(X)2ndspos(X, from(0))
plus(0, Y)Yplus(s(X), Y)s(plus(X, Y))
times(0, Y)0times(s(X), Y)plus(Y, times(X, Y))
square(X)times(X, X)from(X)n__from(X)
s(X)n__s(X)cons(X1, X2)n__cons(X1, X2)
activate(n__from(X))from(activate(X))activate(n__s(X))s(activate(X))
activate(n__cons(X1, X2))cons(activate(X1), X2)activate(X)X

Original Signature

Termination of terms over the following signature is verified: plus, negrecip, posrecip, n__from, rnil, from, rcons, n__s, activate, n__cons, 2ndspos, 0, s, 2ndsneg, times, square, pi, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

times#(s(X), Y)times#(X, Y)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

2ndspos#(s(N), cons(X, n__cons(Y, Z)))2ndsneg#(N, activate(Z))2ndsneg#(s(N), cons(X, n__cons(Y, Z)))2ndspos#(N, activate(Z))

Rewrite Rules

from(X)cons(X, n__from(n__s(X)))2ndspos(0, Z)rnil
2ndspos(s(N), cons(X, n__cons(Y, Z)))rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))2ndsneg(0, Z)rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z)))rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))pi(X)2ndspos(X, from(0))
plus(0, Y)Yplus(s(X), Y)s(plus(X, Y))
times(0, Y)0times(s(X), Y)plus(Y, times(X, Y))
square(X)times(X, X)from(X)n__from(X)
s(X)n__s(X)cons(X1, X2)n__cons(X1, X2)
activate(n__from(X))from(activate(X))activate(n__s(X))s(activate(X))
activate(n__cons(X1, X2))cons(activate(X1), X2)activate(X)X

Original Signature

Termination of terms over the following signature is verified: plus, negrecip, posrecip, n__from, rnil, from, rcons, n__s, activate, n__cons, 2ndspos, 0, s, 2ndsneg, times, square, pi, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

2ndspos#(s(N), cons(X, n__cons(Y, Z)))2ndsneg#(N, activate(Z))2ndsneg#(s(N), cons(X, n__cons(Y, Z)))2ndspos#(N, activate(Z))

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

activate#(n__cons(X1, X2))activate#(X1)activate#(n__s(X))activate#(X)
activate#(n__from(X))activate#(X)

Rewrite Rules

from(X)cons(X, n__from(n__s(X)))2ndspos(0, Z)rnil
2ndspos(s(N), cons(X, n__cons(Y, Z)))rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))2ndsneg(0, Z)rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z)))rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))pi(X)2ndspos(X, from(0))
plus(0, Y)Yplus(s(X), Y)s(plus(X, Y))
times(0, Y)0times(s(X), Y)plus(Y, times(X, Y))
square(X)times(X, X)from(X)n__from(X)
s(X)n__s(X)cons(X1, X2)n__cons(X1, X2)
activate(n__from(X))from(activate(X))activate(n__s(X))s(activate(X))
activate(n__cons(X1, X2))cons(activate(X1), X2)activate(X)X

Original Signature

Termination of terms over the following signature is verified: plus, negrecip, posrecip, n__from, rnil, from, rcons, n__s, activate, n__cons, 2ndspos, 0, s, 2ndsneg, times, square, pi, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

activate#(n__cons(X1, X2))activate#(X1)activate#(n__s(X))activate#(X)
activate#(n__from(X))activate#(X)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

plus#(s(X), Y)plus#(X, Y)

Rewrite Rules

from(X)cons(X, n__from(n__s(X)))2ndspos(0, Z)rnil
2ndspos(s(N), cons(X, n__cons(Y, Z)))rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))2ndsneg(0, Z)rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z)))rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))pi(X)2ndspos(X, from(0))
plus(0, Y)Yplus(s(X), Y)s(plus(X, Y))
times(0, Y)0times(s(X), Y)plus(Y, times(X, Y))
square(X)times(X, X)from(X)n__from(X)
s(X)n__s(X)cons(X1, X2)n__cons(X1, X2)
activate(n__from(X))from(activate(X))activate(n__s(X))s(activate(X))
activate(n__cons(X1, X2))cons(activate(X1), X2)activate(X)X

Original Signature

Termination of terms over the following signature is verified: plus, negrecip, posrecip, n__from, rnil, from, rcons, n__s, activate, n__cons, 2ndspos, 0, s, 2ndsneg, times, square, pi, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

plus#(s(X), Y)plus#(X, Y)