TIMEOUT
The TRS could not be proven terminating. The proof attempt took 60246 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (13732ms).
| Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (7ms), PolynomialLinearRange4iUR (1666ms), DependencyGraph (6ms), PolynomialLinearRange4iUR (2501ms), DependencyGraph (7ms), PolynomialLinearRange8NegiUR (7500ms), DependencyGraph (78ms), ReductionPairSAT (23640ms), DependencyGraph (6ms), ReductionPairSAT (9957ms)].
| Problem 3 was processed with processor SubtermCriterion (1ms).
| Problem 4 was processed with processor SubtermCriterion (2ms).
| Problem 5 was processed with processor SubtermCriterion (3ms).
| Problem 6 was processed with processor SubtermCriterion (1ms).
| | Problem 17 was processed with processor PolynomialLinearRange4iUR (74ms).
| Problem 7 was processed with processor SubtermCriterion (2ms).
| | Problem 18 was processed with processor ReductionPairSAT (70ms).
| Problem 8 was processed with processor SubtermCriterion (1ms).
| Problem 9 was processed with processor SubtermCriterion (3ms).
| Problem 10 was processed with processor SubtermCriterion (1ms).
| Problem 11 was processed with processor SubtermCriterion (1ms).
| Problem 12 was processed with processor SubtermCriterion (3ms).
| | Problem 19 was processed with processor PolynomialLinearRange4iUR (108ms).
| Problem 13 was processed with processor SubtermCriterion (2ms).
| | Problem 20 was processed with processor ReductionPairSAT (74ms).
| Problem 14 was processed with processor SubtermCriterion (2ms).
| | Problem 21 was processed with processor ReductionPairSAT (49ms).
| Problem 15 was processed with processor SubtermCriterion (2ms).
| Problem 16 was processed with processor SubtermCriterion (5ms).
The following open problems remain:
Open Dependency Pair Problem 2
Dependency Pairs
top#(mark(X)) | → | top#(proper(X)) | | top#(ok(X)) | → | top#(active(X)) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
proper#(2ndsneg(X1, X2)) | → | proper#(X1) | | proper#(cons(X1, X2)) | → | proper#(X1) |
active#(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | posrecip#(Y) | | proper#(square(X)) | → | proper#(X) |
active#(pi(X)) | → | from#(0) | | active#(2ndsneg(X1, X2)) | → | active#(X2) |
active#(times(X1, X2)) | → | times#(X1, active(X2)) | | rcons#(ok(X1), ok(X2)) | → | rcons#(X1, X2) |
active#(2ndspos(X1, X2)) | → | 2ndspos#(X1, active(X2)) | | top#(mark(X)) | → | proper#(X) |
active#(posrecip(X)) | → | posrecip#(active(X)) | | 2ndspos#(X1, mark(X2)) | → | 2ndspos#(X1, X2) |
active#(2ndsneg(X1, X2)) | → | 2ndsneg#(X1, active(X2)) | | active#(pi(X)) | → | pi#(active(X)) |
negrecip#(ok(X)) | → | negrecip#(X) | | rcons#(mark(X1), X2) | → | rcons#(X1, X2) |
active#(square(X)) | → | times#(X, X) | | times#(mark(X1), X2) | → | times#(X1, X2) |
negrecip#(mark(X)) | → | negrecip#(X) | | 2ndspos#(mark(X1), X2) | → | 2ndspos#(X1, X2) |
proper#(2ndsneg(X1, X2)) | → | 2ndsneg#(proper(X1), proper(X2)) | | proper#(2ndspos(X1, X2)) | → | proper#(X1) |
proper#(2ndsneg(X1, X2)) | → | proper#(X2) | | active#(negrecip(X)) | → | active#(X) |
active#(plus(X1, X2)) | → | active#(X2) | | active#(2ndspos(X1, X2)) | → | 2ndspos#(active(X1), X2) |
plus#(mark(X1), X2) | → | plus#(X1, X2) | | active#(rcons(X1, X2)) | → | rcons#(X1, active(X2)) |
cons#(mark(X1), X2) | → | cons#(X1, X2) | | pi#(ok(X)) | → | pi#(X) |
active#(posrecip(X)) | → | active#(X) | | 2ndsneg#(ok(X1), ok(X2)) | → | 2ndsneg#(X1, X2) |
from#(mark(X)) | → | from#(X) | | proper#(pi(X)) | → | pi#(proper(X)) |
top#(ok(X)) | → | active#(X) | | proper#(posrecip(X)) | → | proper#(X) |
times#(ok(X1), ok(X2)) | → | times#(X1, X2) | | square#(mark(X)) | → | square#(X) |
proper#(from(X)) | → | from#(proper(X)) | | times#(X1, mark(X2)) | → | times#(X1, X2) |
active#(pi(X)) | → | 2ndspos#(X, from(0)) | | proper#(rcons(X1, X2)) | → | proper#(X1) |
active#(plus(s(X), Y)) | → | plus#(X, Y) | | plus#(ok(X1), ok(X2)) | → | plus#(X1, X2) |
posrecip#(mark(X)) | → | posrecip#(X) | | active#(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | negrecip#(Y) |
proper#(2ndspos(X1, X2)) | → | 2ndspos#(proper(X1), proper(X2)) | | active#(times(s(X), Y)) | → | plus#(Y, times(X, Y)) |
proper#(negrecip(X)) | → | proper#(X) | | active#(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | 2ndspos#(N, Z) |
active#(s(X)) | → | s#(active(X)) | | proper#(posrecip(X)) | → | posrecip#(proper(X)) |
s#(ok(X)) | → | s#(X) | | 2ndsneg#(X1, mark(X2)) | → | 2ndsneg#(X1, X2) |
proper#(s(X)) | → | s#(proper(X)) | | active#(2ndsneg(X1, X2)) | → | active#(X1) |
rcons#(X1, mark(X2)) | → | rcons#(X1, X2) | | active#(from(X)) | → | from#(s(X)) |
active#(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | rcons#(posrecip(Y), 2ndsneg(N, Z)) | | top#(ok(X)) | → | top#(active(X)) |
active#(square(X)) | → | square#(active(X)) | | active#(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | rcons#(negrecip(Y), 2ndspos(N, Z)) |
cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) | | active#(rcons(X1, X2)) | → | rcons#(active(X1), X2) |
proper#(times(X1, X2)) | → | proper#(X2) | | proper#(negrecip(X)) | → | negrecip#(proper(X)) |
from#(ok(X)) | → | from#(X) | | proper#(2ndspos(X1, X2)) | → | proper#(X2) |
active#(cons(X1, X2)) | → | cons#(active(X1), X2) | | active#(rcons(X1, X2)) | → | active#(X2) |
pi#(mark(X)) | → | pi#(X) | | active#(2ndspos(X1, X2)) | → | active#(X1) |
plus#(X1, mark(X2)) | → | plus#(X1, X2) | | posrecip#(ok(X)) | → | posrecip#(X) |
proper#(plus(X1, X2)) | → | proper#(X1) | | active#(rcons(X1, X2)) | → | active#(X1) |
proper#(from(X)) | → | proper#(X) | | proper#(plus(X1, X2)) | → | plus#(proper(X1), proper(X2)) |
top#(mark(X)) | → | top#(proper(X)) | | proper#(cons(X1, X2)) | → | proper#(X2) |
active#(2ndsneg(X1, X2)) | → | 2ndsneg#(active(X1), X2) | | active#(from(X)) | → | s#(X) |
proper#(rcons(X1, X2)) | → | rcons#(proper(X1), proper(X2)) | | proper#(s(X)) | → | proper#(X) |
proper#(square(X)) | → | square#(proper(X)) | | active#(plus(X1, X2)) | → | active#(X1) |
proper#(times(X1, X2)) | → | times#(proper(X1), proper(X2)) | | active#(times(X1, X2)) | → | active#(X2) |
active#(plus(s(X), Y)) | → | s#(plus(X, Y)) | | active#(cons(X1, X2)) | → | active#(X1) |
active#(from(X)) | → | from#(active(X)) | | active#(pi(X)) | → | active#(X) |
active#(times(s(X), Y)) | → | times#(X, Y) | | active#(times(X1, X2)) | → | times#(active(X1), X2) |
active#(from(X)) | → | cons#(X, from(s(X))) | | 2ndsneg#(mark(X1), X2) | → | 2ndsneg#(X1, X2) |
proper#(pi(X)) | → | proper#(X) | | proper#(plus(X1, X2)) | → | proper#(X2) |
active#(from(X)) | → | active#(X) | | active#(negrecip(X)) | → | negrecip#(active(X)) |
active#(2ndspos(X1, X2)) | → | active#(X2) | | proper#(rcons(X1, X2)) | → | proper#(X2) |
active#(times(X1, X2)) | → | active#(X1) | | s#(mark(X)) | → | s#(X) |
active#(plus(X1, X2)) | → | plus#(X1, active(X2)) | | square#(ok(X)) | → | square#(X) |
proper#(times(X1, X2)) | → | proper#(X1) | | proper#(cons(X1, X2)) | → | cons#(proper(X1), proper(X2)) |
active#(square(X)) | → | active#(X) | | active#(s(X)) | → | active#(X) |
active#(plus(X1, X2)) | → | plus#(active(X1), X2) | | 2ndspos#(ok(X1), ok(X2)) | → | 2ndspos#(X1, X2) |
active#(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | 2ndsneg#(N, Z) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
The following SCCs where found
times#(ok(X1), ok(X2)) → times#(X1, X2) | times#(X1, mark(X2)) → times#(X1, X2) |
times#(mark(X1), X2) → times#(X1, X2) |
negrecip#(ok(X)) → negrecip#(X) | negrecip#(mark(X)) → negrecip#(X) |
s#(mark(X)) → s#(X) | s#(ok(X)) → s#(X) |
2ndspos#(mark(X1), X2) → 2ndspos#(X1, X2) | 2ndspos#(X1, mark(X2)) → 2ndspos#(X1, X2) |
2ndspos#(ok(X1), ok(X2)) → 2ndspos#(X1, X2) |
cons#(mark(X1), X2) → cons#(X1, X2) | cons#(ok(X1), ok(X2)) → cons#(X1, X2) |
plus#(ok(X1), ok(X2)) → plus#(X1, X2) | plus#(X1, mark(X2)) → plus#(X1, X2) |
plus#(mark(X1), X2) → plus#(X1, X2) |
square#(ok(X)) → square#(X) | square#(mark(X)) → square#(X) |
active#(from(X)) → active#(X) | active#(2ndspos(X1, X2)) → active#(X2) |
active#(2ndsneg(X1, X2)) → active#(X2) | active#(posrecip(X)) → active#(X) |
active#(pi(X)) → active#(X) | active#(times(X1, X2)) → active#(X1) |
active#(plus(X1, X2)) → active#(X1) | active#(rcons(X1, X2)) → active#(X2) |
active#(square(X)) → active#(X) | active#(s(X)) → active#(X) |
active#(2ndspos(X1, X2)) → active#(X1) | active#(times(X1, X2)) → active#(X2) |
active#(negrecip(X)) → active#(X) | active#(plus(X1, X2)) → active#(X2) |
active#(2ndsneg(X1, X2)) → active#(X1) | active#(rcons(X1, X2)) → active#(X1) |
active#(cons(X1, X2)) → active#(X1) |
rcons#(ok(X1), ok(X2)) → rcons#(X1, X2) | rcons#(mark(X1), X2) → rcons#(X1, X2) |
rcons#(X1, mark(X2)) → rcons#(X1, X2) |
pi#(mark(X)) → pi#(X) | pi#(ok(X)) → pi#(X) |
proper#(2ndsneg(X1, X2)) → proper#(X1) | proper#(cons(X1, X2)) → proper#(X1) |
proper#(cons(X1, X2)) → proper#(X2) | proper#(square(X)) → proper#(X) |
proper#(negrecip(X)) → proper#(X) | proper#(times(X1, X2)) → proper#(X2) |
proper#(rcons(X1, X2)) → proper#(X2) | proper#(2ndspos(X1, X2)) → proper#(X2) |
proper#(posrecip(X)) → proper#(X) | proper#(s(X)) → proper#(X) |
proper#(times(X1, X2)) → proper#(X1) | proper#(2ndspos(X1, X2)) → proper#(X1) |
proper#(2ndsneg(X1, X2)) → proper#(X2) | proper#(plus(X1, X2)) → proper#(X1) |
proper#(pi(X)) → proper#(X) | proper#(rcons(X1, X2)) → proper#(X1) |
proper#(plus(X1, X2)) → proper#(X2) | proper#(from(X)) → proper#(X) |
posrecip#(mark(X)) → posrecip#(X) | posrecip#(ok(X)) → posrecip#(X) |
from#(mark(X)) → from#(X) | from#(ok(X)) → from#(X) |
top#(mark(X)) → top#(proper(X)) | top#(ok(X)) → top#(active(X)) |
2ndsneg#(X1, mark(X2)) → 2ndsneg#(X1, X2) | 2ndsneg#(mark(X1), X2) → 2ndsneg#(X1, X2) |
2ndsneg#(ok(X1), ok(X2)) → 2ndsneg#(X1, X2) |
Problem 3: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
pi#(mark(X)) | → | pi#(X) | | pi#(ok(X)) | → | pi#(X) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
pi#(mark(X)) | → | pi#(X) | | pi#(ok(X)) | → | pi#(X) |
Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
square#(ok(X)) | → | square#(X) | | square#(mark(X)) | → | square#(X) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
square#(ok(X)) | → | square#(X) | | square#(mark(X)) | → | square#(X) |
Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
posrecip#(mark(X)) | → | posrecip#(X) | | posrecip#(ok(X)) | → | posrecip#(X) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
posrecip#(mark(X)) | → | posrecip#(X) | | posrecip#(ok(X)) | → | posrecip#(X) |
Problem 6: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
2ndspos#(mark(X1), X2) | → | 2ndspos#(X1, X2) | | 2ndspos#(X1, mark(X2)) | → | 2ndspos#(X1, X2) |
2ndspos#(ok(X1), ok(X2)) | → | 2ndspos#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
2ndspos#(mark(X1), X2) | → | 2ndspos#(X1, X2) | | 2ndspos#(ok(X1), ok(X2)) | → | 2ndspos#(X1, X2) |
Problem 17: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
2ndspos#(X1, mark(X2)) | → | 2ndspos#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons
Strategy
Polynomial Interpretation
- 0: 0
- 2ndsneg(x,y): 0
- 2ndspos(x,y): 0
- 2ndspos#(x,y): y + x + 1
- active(x): 0
- cons(x,y): 0
- from(x): 0
- mark(x): x + 2
- negrecip(x): 0
- nil: 0
- ok(x): 0
- pi(x): 0
- plus(x,y): 0
- posrecip(x): 0
- proper(x): 0
- rcons(x,y): 0
- rnil: 0
- s(x): 0
- square(x): 0
- times(x,y): 0
- top(x): 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
2ndspos#(X1, mark(X2)) | → | 2ndspos#(X1, X2) |
Problem 7: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
2ndsneg#(X1, mark(X2)) | → | 2ndsneg#(X1, X2) | | 2ndsneg#(mark(X1), X2) | → | 2ndsneg#(X1, X2) |
2ndsneg#(ok(X1), ok(X2)) | → | 2ndsneg#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
2ndsneg#(mark(X1), X2) | → | 2ndsneg#(X1, X2) | | 2ndsneg#(ok(X1), ok(X2)) | → | 2ndsneg#(X1, X2) |
Problem 18: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
2ndsneg#(X1, mark(X2)) | → | 2ndsneg#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons
Strategy
Function Precedence
plus = posrecip = negrecip = rnil = 2ndsneg# = mark = from = rcons = 2ndspos = 0 = s = times = 2ndsneg = active = ok = square = proper = pi = top = cons = nil
Argument Filtering
plus: 1
posrecip: all arguments are removed from posrecip
negrecip: collapses to 1
rnil: all arguments are removed from rnil
2ndsneg#: 2
mark: 1
from: all arguments are removed from from
rcons: all arguments are removed from rcons
2ndspos: all arguments are removed from 2ndspos
0: all arguments are removed from 0
s: all arguments are removed from s
times: all arguments are removed from times
2ndsneg: 1 2
active: collapses to 1
ok: all arguments are removed from ok
square: all arguments are removed from square
proper: all arguments are removed from proper
pi: 1
top: collapses to 1
cons: 1 2
nil: all arguments are removed from nil
Status
plus: lexicographic with permutation 1 → 1
posrecip: multiset
rnil: multiset
2ndsneg#: lexicographic with permutation 2 → 1
mark: multiset
from: multiset
rcons: multiset
2ndspos: multiset
0: multiset
s: multiset
times: multiset
2ndsneg: lexicographic with permutation 1 → 1 2 → 2
ok: multiset
square: multiset
proper: multiset
pi: lexicographic with permutation 1 → 1
cons: lexicographic with permutation 1 → 2 2 → 1
nil: multiset
Usable Rules
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
2ndsneg#(X1, mark(X2)) → 2ndsneg#(X1, X2) |
Problem 8: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
from#(mark(X)) | → | from#(X) | | from#(ok(X)) | → | from#(X) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
from#(mark(X)) | → | from#(X) | | from#(ok(X)) | → | from#(X) |
Problem 9: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
negrecip#(ok(X)) | → | negrecip#(X) | | negrecip#(mark(X)) | → | negrecip#(X) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
negrecip#(ok(X)) | → | negrecip#(X) | | negrecip#(mark(X)) | → | negrecip#(X) |
Problem 10: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
s#(mark(X)) | → | s#(X) | | s#(ok(X)) | → | s#(X) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
s#(mark(X)) | → | s#(X) | | s#(ok(X)) | → | s#(X) |
Problem 11: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
cons#(mark(X1), X2) | → | cons#(X1, X2) | | cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
cons#(mark(X1), X2) | → | cons#(X1, X2) | | cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) |
Problem 12: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
rcons#(ok(X1), ok(X2)) | → | rcons#(X1, X2) | | rcons#(mark(X1), X2) | → | rcons#(X1, X2) |
rcons#(X1, mark(X2)) | → | rcons#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
rcons#(ok(X1), ok(X2)) | → | rcons#(X1, X2) | | rcons#(mark(X1), X2) | → | rcons#(X1, X2) |
Problem 19: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
rcons#(X1, mark(X2)) | → | rcons#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons
Strategy
Polynomial Interpretation
- 0: 0
- 2ndsneg(x,y): 0
- 2ndspos(x,y): 0
- active(x): 0
- cons(x,y): 0
- from(x): 0
- mark(x): 2x + 1
- negrecip(x): 0
- nil: 0
- ok(x): 0
- pi(x): 0
- plus(x,y): 0
- posrecip(x): 0
- proper(x): 0
- rcons(x,y): 0
- rcons#(x,y): 2y + x
- rnil: 0
- s(x): 0
- square(x): 0
- times(x,y): 0
- top(x): 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
rcons#(X1, mark(X2)) | → | rcons#(X1, X2) |
Problem 13: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
times#(ok(X1), ok(X2)) | → | times#(X1, X2) | | times#(X1, mark(X2)) | → | times#(X1, X2) |
times#(mark(X1), X2) | → | times#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
times#(ok(X1), ok(X2)) | → | times#(X1, X2) | | times#(mark(X1), X2) | → | times#(X1, X2) |
Problem 20: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
times#(X1, mark(X2)) | → | times#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons
Strategy
Function Precedence
times# < mark < plus = posrecip = negrecip = rnil = from = rcons = 2ndspos = 0 = s = times = 2ndsneg = active = ok = square = proper = pi = top = cons = nil
Argument Filtering
plus: all arguments are removed from plus
posrecip: all arguments are removed from posrecip
negrecip: all arguments are removed from negrecip
rnil: all arguments are removed from rnil
mark: 1
from: all arguments are removed from from
rcons: collapses to 2
2ndspos: all arguments are removed from 2ndspos
0: all arguments are removed from 0
times#: 2
s: all arguments are removed from s
times: all arguments are removed from times
2ndsneg: 1 2
active: all arguments are removed from active
ok: all arguments are removed from ok
square: collapses to 1
proper: collapses to 1
pi: collapses to 1
top: all arguments are removed from top
cons: 1 2
nil: all arguments are removed from nil
Status
plus: multiset
posrecip: multiset
negrecip: multiset
rnil: multiset
mark: multiset
from: multiset
2ndspos: multiset
0: multiset
times#: lexicographic with permutation 2 → 1
s: multiset
times: multiset
2ndsneg: lexicographic with permutation 1 → 2 2 → 1
active: multiset
ok: multiset
top: multiset
cons: lexicographic with permutation 1 → 2 2 → 1
nil: multiset
Usable Rules
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
times#(X1, mark(X2)) → times#(X1, X2) |
Problem 14: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
plus#(ok(X1), ok(X2)) | → | plus#(X1, X2) | | plus#(X1, mark(X2)) | → | plus#(X1, X2) |
plus#(mark(X1), X2) | → | plus#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
plus#(ok(X1), ok(X2)) | → | plus#(X1, X2) | | plus#(mark(X1), X2) | → | plus#(X1, X2) |
Problem 21: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
plus#(X1, mark(X2)) | → | plus#(X1, X2) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons
Strategy
Function Precedence
plus = posrecip = negrecip = rnil = mark = from = rcons = 2ndspos = 0 = s = times = 2ndsneg = active = plus# = ok = square = proper = pi = top = cons = nil
Argument Filtering
plus: all arguments are removed from plus
posrecip: all arguments are removed from posrecip
negrecip: all arguments are removed from negrecip
rnil: all arguments are removed from rnil
mark: 1
from: all arguments are removed from from
rcons: all arguments are removed from rcons
2ndspos: all arguments are removed from 2ndspos
0: all arguments are removed from 0
s: all arguments are removed from s
times: all arguments are removed from times
2ndsneg: all arguments are removed from 2ndsneg
active: all arguments are removed from active
plus#: 1 2
ok: all arguments are removed from ok
square: collapses to 1
proper: all arguments are removed from proper
pi: collapses to 1
top: all arguments are removed from top
cons: all arguments are removed from cons
nil: all arguments are removed from nil
Status
plus: multiset
posrecip: multiset
negrecip: multiset
rnil: multiset
mark: multiset
from: multiset
rcons: multiset
2ndspos: multiset
0: multiset
s: multiset
times: multiset
2ndsneg: multiset
active: multiset
plus#: multiset
ok: multiset
proper: multiset
top: multiset
cons: multiset
nil: multiset
Usable Rules
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
plus#(X1, mark(X2)) → plus#(X1, X2) |
Problem 15: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
active#(from(X)) | → | active#(X) | | active#(2ndspos(X1, X2)) | → | active#(X2) |
active#(2ndsneg(X1, X2)) | → | active#(X2) | | active#(pi(X)) | → | active#(X) |
active#(posrecip(X)) | → | active#(X) | | active#(times(X1, X2)) | → | active#(X1) |
active#(plus(X1, X2)) | → | active#(X1) | | active#(square(X)) | → | active#(X) |
active#(rcons(X1, X2)) | → | active#(X2) | | active#(s(X)) | → | active#(X) |
active#(2ndspos(X1, X2)) | → | active#(X1) | | active#(negrecip(X)) | → | active#(X) |
active#(times(X1, X2)) | → | active#(X2) | | active#(plus(X1, X2)) | → | active#(X2) |
active#(2ndsneg(X1, X2)) | → | active#(X1) | | active#(rcons(X1, X2)) | → | active#(X1) |
active#(cons(X1, X2)) | → | active#(X1) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
active#(from(X)) | → | active#(X) | | active#(2ndspos(X1, X2)) | → | active#(X2) |
active#(2ndsneg(X1, X2)) | → | active#(X2) | | active#(pi(X)) | → | active#(X) |
active#(posrecip(X)) | → | active#(X) | | active#(times(X1, X2)) | → | active#(X1) |
active#(plus(X1, X2)) | → | active#(X1) | | active#(square(X)) | → | active#(X) |
active#(rcons(X1, X2)) | → | active#(X2) | | active#(s(X)) | → | active#(X) |
active#(2ndspos(X1, X2)) | → | active#(X1) | | active#(negrecip(X)) | → | active#(X) |
active#(times(X1, X2)) | → | active#(X2) | | active#(plus(X1, X2)) | → | active#(X2) |
active#(2ndsneg(X1, X2)) | → | active#(X1) | | active#(rcons(X1, X2)) | → | active#(X1) |
active#(cons(X1, X2)) | → | active#(X1) |
Problem 16: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
proper#(cons(X1, X2)) | → | proper#(X1) | | proper#(2ndsneg(X1, X2)) | → | proper#(X1) |
proper#(cons(X1, X2)) | → | proper#(X2) | | proper#(square(X)) | → | proper#(X) |
proper#(negrecip(X)) | → | proper#(X) | | proper#(times(X1, X2)) | → | proper#(X2) |
proper#(rcons(X1, X2)) | → | proper#(X2) | | proper#(posrecip(X)) | → | proper#(X) |
proper#(2ndspos(X1, X2)) | → | proper#(X2) | | proper#(s(X)) | → | proper#(X) |
proper#(times(X1, X2)) | → | proper#(X1) | | proper#(2ndspos(X1, X2)) | → | proper#(X1) |
proper#(2ndsneg(X1, X2)) | → | proper#(X2) | | proper#(plus(X1, X2)) | → | proper#(X1) |
proper#(pi(X)) | → | proper#(X) | | proper#(rcons(X1, X2)) | → | proper#(X1) |
proper#(plus(X1, X2)) | → | proper#(X2) | | proper#(from(X)) | → | proper#(X) |
Rewrite Rules
active(from(X)) | → | mark(cons(X, from(s(X)))) | | active(2ndspos(0, Z)) | → | mark(rnil) |
active(2ndspos(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(posrecip(Y), 2ndsneg(N, Z))) | | active(2ndsneg(0, Z)) | → | mark(rnil) |
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) | → | mark(rcons(negrecip(Y), 2ndspos(N, Z))) | | active(pi(X)) | → | mark(2ndspos(X, from(0))) |
active(plus(0, Y)) | → | mark(Y) | | active(plus(s(X), Y)) | → | mark(s(plus(X, Y))) |
active(times(0, Y)) | → | mark(0) | | active(times(s(X), Y)) | → | mark(plus(Y, times(X, Y))) |
active(square(X)) | → | mark(times(X, X)) | | active(s(X)) | → | s(active(X)) |
active(posrecip(X)) | → | posrecip(active(X)) | | active(negrecip(X)) | → | negrecip(active(X)) |
active(cons(X1, X2)) | → | cons(active(X1), X2) | | active(rcons(X1, X2)) | → | rcons(active(X1), X2) |
active(rcons(X1, X2)) | → | rcons(X1, active(X2)) | | active(from(X)) | → | from(active(X)) |
active(2ndspos(X1, X2)) | → | 2ndspos(active(X1), X2) | | active(2ndspos(X1, X2)) | → | 2ndspos(X1, active(X2)) |
active(2ndsneg(X1, X2)) | → | 2ndsneg(active(X1), X2) | | active(2ndsneg(X1, X2)) | → | 2ndsneg(X1, active(X2)) |
active(pi(X)) | → | pi(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | active(times(X1, X2)) | → | times(active(X1), X2) |
active(times(X1, X2)) | → | times(X1, active(X2)) | | active(square(X)) | → | square(active(X)) |
s(mark(X)) | → | mark(s(X)) | | posrecip(mark(X)) | → | mark(posrecip(X)) |
negrecip(mark(X)) | → | mark(negrecip(X)) | | cons(mark(X1), X2) | → | mark(cons(X1, X2)) |
rcons(mark(X1), X2) | → | mark(rcons(X1, X2)) | | rcons(X1, mark(X2)) | → | mark(rcons(X1, X2)) |
from(mark(X)) | → | mark(from(X)) | | 2ndspos(mark(X1), X2) | → | mark(2ndspos(X1, X2)) |
2ndspos(X1, mark(X2)) | → | mark(2ndspos(X1, X2)) | | 2ndsneg(mark(X1), X2) | → | mark(2ndsneg(X1, X2)) |
2ndsneg(X1, mark(X2)) | → | mark(2ndsneg(X1, X2)) | | pi(mark(X)) | → | mark(pi(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
times(mark(X1), X2) | → | mark(times(X1, X2)) | | times(X1, mark(X2)) | → | mark(times(X1, X2)) |
square(mark(X)) | → | mark(square(X)) | | proper(0) | → | ok(0) |
proper(s(X)) | → | s(proper(X)) | | proper(posrecip(X)) | → | posrecip(proper(X)) |
proper(negrecip(X)) | → | negrecip(proper(X)) | | proper(nil) | → | ok(nil) |
proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | | proper(rnil) | → | ok(rnil) |
proper(rcons(X1, X2)) | → | rcons(proper(X1), proper(X2)) | | proper(from(X)) | → | from(proper(X)) |
proper(2ndspos(X1, X2)) | → | 2ndspos(proper(X1), proper(X2)) | | proper(2ndsneg(X1, X2)) | → | 2ndsneg(proper(X1), proper(X2)) |
proper(pi(X)) | → | pi(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(times(X1, X2)) | → | times(proper(X1), proper(X2)) | | proper(square(X)) | → | square(proper(X)) |
s(ok(X)) | → | ok(s(X)) | | posrecip(ok(X)) | → | ok(posrecip(X)) |
negrecip(ok(X)) | → | ok(negrecip(X)) | | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) |
rcons(ok(X1), ok(X2)) | → | ok(rcons(X1, X2)) | | from(ok(X)) | → | ok(from(X)) |
2ndspos(ok(X1), ok(X2)) | → | ok(2ndspos(X1, X2)) | | 2ndsneg(ok(X1), ok(X2)) | → | ok(2ndsneg(X1, X2)) |
pi(ok(X)) | → | ok(pi(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
times(ok(X1), ok(X2)) | → | ok(times(X1, X2)) | | square(ok(X)) | → | ok(square(X)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
proper#(cons(X1, X2)) | → | proper#(X1) | | proper#(2ndsneg(X1, X2)) | → | proper#(X1) |
proper#(cons(X1, X2)) | → | proper#(X2) | | proper#(square(X)) | → | proper#(X) |
proper#(negrecip(X)) | → | proper#(X) | | proper#(times(X1, X2)) | → | proper#(X2) |
proper#(rcons(X1, X2)) | → | proper#(X2) | | proper#(2ndspos(X1, X2)) | → | proper#(X2) |
proper#(posrecip(X)) | → | proper#(X) | | proper#(s(X)) | → | proper#(X) |
proper#(times(X1, X2)) | → | proper#(X1) | | proper#(2ndspos(X1, X2)) | → | proper#(X1) |
proper#(2ndsneg(X1, X2)) | → | proper#(X2) | | proper#(plus(X1, X2)) | → | proper#(X1) |
proper#(pi(X)) | → | proper#(X) | | proper#(plus(X1, X2)) | → | proper#(X2) |
proper#(rcons(X1, X2)) | → | proper#(X1) | | proper#(from(X)) | → | proper#(X) |