TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60246 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (13732ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (7ms), PolynomialLinearRange4iUR (1666ms), DependencyGraph (6ms), PolynomialLinearRange4iUR (2501ms), DependencyGraph (7ms), PolynomialLinearRange8NegiUR (7500ms), DependencyGraph (78ms), ReductionPairSAT (23640ms), DependencyGraph (6ms), ReductionPairSAT (9957ms)].
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (2ms).
 | – Problem 5 was processed with processor SubtermCriterion (3ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 17 was processed with processor PolynomialLinearRange4iUR (74ms).
 | – Problem 7 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 18 was processed with processor ReductionPairSAT (70ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 9 was processed with processor SubtermCriterion (3ms).
 | – Problem 10 was processed with processor SubtermCriterion (1ms).
 | – Problem 11 was processed with processor SubtermCriterion (1ms).
 | – Problem 12 was processed with processor SubtermCriterion (3ms).
 |    | – Problem 19 was processed with processor PolynomialLinearRange4iUR (108ms).
 | – Problem 13 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 20 was processed with processor ReductionPairSAT (74ms).
 | – Problem 14 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 21 was processed with processor ReductionPairSAT (49ms).
 | – Problem 15 was processed with processor SubtermCriterion (2ms).
 | – Problem 16 was processed with processor SubtermCriterion (5ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

proper#(2ndsneg(X1, X2))proper#(X1)proper#(cons(X1, X2))proper#(X1)
active#(2ndspos(s(N), cons(X, cons(Y, Z))))posrecip#(Y)proper#(square(X))proper#(X)
active#(pi(X))from#(0)active#(2ndsneg(X1, X2))active#(X2)
active#(times(X1, X2))times#(X1, active(X2))rcons#(ok(X1), ok(X2))rcons#(X1, X2)
active#(2ndspos(X1, X2))2ndspos#(X1, active(X2))top#(mark(X))proper#(X)
active#(posrecip(X))posrecip#(active(X))2ndspos#(X1, mark(X2))2ndspos#(X1, X2)
active#(2ndsneg(X1, X2))2ndsneg#(X1, active(X2))active#(pi(X))pi#(active(X))
negrecip#(ok(X))negrecip#(X)rcons#(mark(X1), X2)rcons#(X1, X2)
active#(square(X))times#(X, X)times#(mark(X1), X2)times#(X1, X2)
negrecip#(mark(X))negrecip#(X)2ndspos#(mark(X1), X2)2ndspos#(X1, X2)
proper#(2ndsneg(X1, X2))2ndsneg#(proper(X1), proper(X2))proper#(2ndspos(X1, X2))proper#(X1)
proper#(2ndsneg(X1, X2))proper#(X2)active#(negrecip(X))active#(X)
active#(plus(X1, X2))active#(X2)active#(2ndspos(X1, X2))2ndspos#(active(X1), X2)
plus#(mark(X1), X2)plus#(X1, X2)active#(rcons(X1, X2))rcons#(X1, active(X2))
cons#(mark(X1), X2)cons#(X1, X2)pi#(ok(X))pi#(X)
active#(posrecip(X))active#(X)2ndsneg#(ok(X1), ok(X2))2ndsneg#(X1, X2)
from#(mark(X))from#(X)proper#(pi(X))pi#(proper(X))
top#(ok(X))active#(X)proper#(posrecip(X))proper#(X)
times#(ok(X1), ok(X2))times#(X1, X2)square#(mark(X))square#(X)
proper#(from(X))from#(proper(X))times#(X1, mark(X2))times#(X1, X2)
active#(pi(X))2ndspos#(X, from(0))proper#(rcons(X1, X2))proper#(X1)
active#(plus(s(X), Y))plus#(X, Y)plus#(ok(X1), ok(X2))plus#(X1, X2)
posrecip#(mark(X))posrecip#(X)active#(2ndsneg(s(N), cons(X, cons(Y, Z))))negrecip#(Y)
proper#(2ndspos(X1, X2))2ndspos#(proper(X1), proper(X2))active#(times(s(X), Y))plus#(Y, times(X, Y))
proper#(negrecip(X))proper#(X)active#(2ndsneg(s(N), cons(X, cons(Y, Z))))2ndspos#(N, Z)
active#(s(X))s#(active(X))proper#(posrecip(X))posrecip#(proper(X))
s#(ok(X))s#(X)2ndsneg#(X1, mark(X2))2ndsneg#(X1, X2)
proper#(s(X))s#(proper(X))active#(2ndsneg(X1, X2))active#(X1)
rcons#(X1, mark(X2))rcons#(X1, X2)active#(from(X))from#(s(X))
active#(2ndspos(s(N), cons(X, cons(Y, Z))))rcons#(posrecip(Y), 2ndsneg(N, Z))top#(ok(X))top#(active(X))
active#(square(X))square#(active(X))active#(2ndsneg(s(N), cons(X, cons(Y, Z))))rcons#(negrecip(Y), 2ndspos(N, Z))
cons#(ok(X1), ok(X2))cons#(X1, X2)active#(rcons(X1, X2))rcons#(active(X1), X2)
proper#(times(X1, X2))proper#(X2)proper#(negrecip(X))negrecip#(proper(X))
from#(ok(X))from#(X)proper#(2ndspos(X1, X2))proper#(X2)
active#(cons(X1, X2))cons#(active(X1), X2)active#(rcons(X1, X2))active#(X2)
pi#(mark(X))pi#(X)active#(2ndspos(X1, X2))active#(X1)
plus#(X1, mark(X2))plus#(X1, X2)posrecip#(ok(X))posrecip#(X)
proper#(plus(X1, X2))proper#(X1)active#(rcons(X1, X2))active#(X1)
proper#(from(X))proper#(X)proper#(plus(X1, X2))plus#(proper(X1), proper(X2))
top#(mark(X))top#(proper(X))proper#(cons(X1, X2))proper#(X2)
active#(2ndsneg(X1, X2))2ndsneg#(active(X1), X2)active#(from(X))s#(X)
proper#(rcons(X1, X2))rcons#(proper(X1), proper(X2))proper#(s(X))proper#(X)
proper#(square(X))square#(proper(X))active#(plus(X1, X2))active#(X1)
proper#(times(X1, X2))times#(proper(X1), proper(X2))active#(times(X1, X2))active#(X2)
active#(plus(s(X), Y))s#(plus(X, Y))active#(cons(X1, X2))active#(X1)
active#(from(X))from#(active(X))active#(pi(X))active#(X)
active#(times(s(X), Y))times#(X, Y)active#(times(X1, X2))times#(active(X1), X2)
active#(from(X))cons#(X, from(s(X)))2ndsneg#(mark(X1), X2)2ndsneg#(X1, X2)
proper#(pi(X))proper#(X)proper#(plus(X1, X2))proper#(X2)
active#(from(X))active#(X)active#(negrecip(X))negrecip#(active(X))
active#(2ndspos(X1, X2))active#(X2)proper#(rcons(X1, X2))proper#(X2)
active#(times(X1, X2))active#(X1)s#(mark(X))s#(X)
active#(plus(X1, X2))plus#(X1, active(X2))square#(ok(X))square#(X)
proper#(times(X1, X2))proper#(X1)proper#(cons(X1, X2))cons#(proper(X1), proper(X2))
active#(square(X))active#(X)active#(s(X))active#(X)
active#(plus(X1, X2))plus#(active(X1), X2)2ndspos#(ok(X1), ok(X2))2ndspos#(X1, X2)
active#(2ndspos(s(N), cons(X, cons(Y, Z))))2ndsneg#(N, Z)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


The following SCCs where found

times#(ok(X1), ok(X2)) → times#(X1, X2)times#(X1, mark(X2)) → times#(X1, X2)
times#(mark(X1), X2) → times#(X1, X2)

negrecip#(ok(X)) → negrecip#(X)negrecip#(mark(X)) → negrecip#(X)

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

2ndspos#(mark(X1), X2) → 2ndspos#(X1, X2)2ndspos#(X1, mark(X2)) → 2ndspos#(X1, X2)
2ndspos#(ok(X1), ok(X2)) → 2ndspos#(X1, X2)

cons#(mark(X1), X2) → cons#(X1, X2)cons#(ok(X1), ok(X2)) → cons#(X1, X2)

plus#(ok(X1), ok(X2)) → plus#(X1, X2)plus#(X1, mark(X2)) → plus#(X1, X2)
plus#(mark(X1), X2) → plus#(X1, X2)

square#(ok(X)) → square#(X)square#(mark(X)) → square#(X)

active#(from(X)) → active#(X)active#(2ndspos(X1, X2)) → active#(X2)
active#(2ndsneg(X1, X2)) → active#(X2)active#(posrecip(X)) → active#(X)
active#(pi(X)) → active#(X)active#(times(X1, X2)) → active#(X1)
active#(plus(X1, X2)) → active#(X1)active#(rcons(X1, X2)) → active#(X2)
active#(square(X)) → active#(X)active#(s(X)) → active#(X)
active#(2ndspos(X1, X2)) → active#(X1)active#(times(X1, X2)) → active#(X2)
active#(negrecip(X)) → active#(X)active#(plus(X1, X2)) → active#(X2)
active#(2ndsneg(X1, X2)) → active#(X1)active#(rcons(X1, X2)) → active#(X1)
active#(cons(X1, X2)) → active#(X1)

rcons#(ok(X1), ok(X2)) → rcons#(X1, X2)rcons#(mark(X1), X2) → rcons#(X1, X2)
rcons#(X1, mark(X2)) → rcons#(X1, X2)

pi#(mark(X)) → pi#(X)pi#(ok(X)) → pi#(X)

proper#(2ndsneg(X1, X2)) → proper#(X1)proper#(cons(X1, X2)) → proper#(X1)
proper#(cons(X1, X2)) → proper#(X2)proper#(square(X)) → proper#(X)
proper#(negrecip(X)) → proper#(X)proper#(times(X1, X2)) → proper#(X2)
proper#(rcons(X1, X2)) → proper#(X2)proper#(2ndspos(X1, X2)) → proper#(X2)
proper#(posrecip(X)) → proper#(X)proper#(s(X)) → proper#(X)
proper#(times(X1, X2)) → proper#(X1)proper#(2ndspos(X1, X2)) → proper#(X1)
proper#(2ndsneg(X1, X2)) → proper#(X2)proper#(plus(X1, X2)) → proper#(X1)
proper#(pi(X)) → proper#(X)proper#(rcons(X1, X2)) → proper#(X1)
proper#(plus(X1, X2)) → proper#(X2)proper#(from(X)) → proper#(X)

posrecip#(mark(X)) → posrecip#(X)posrecip#(ok(X)) → posrecip#(X)

from#(mark(X)) → from#(X)from#(ok(X)) → from#(X)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

2ndsneg#(X1, mark(X2)) → 2ndsneg#(X1, X2)2ndsneg#(mark(X1), X2) → 2ndsneg#(X1, X2)
2ndsneg#(ok(X1), ok(X2)) → 2ndsneg#(X1, X2)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

pi#(mark(X))pi#(X)pi#(ok(X))pi#(X)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

pi#(mark(X))pi#(X)pi#(ok(X))pi#(X)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

square#(ok(X))square#(X)square#(mark(X))square#(X)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

square#(ok(X))square#(X)square#(mark(X))square#(X)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

posrecip#(mark(X))posrecip#(X)posrecip#(ok(X))posrecip#(X)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

posrecip#(mark(X))posrecip#(X)posrecip#(ok(X))posrecip#(X)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

2ndspos#(mark(X1), X2)2ndspos#(X1, X2)2ndspos#(X1, mark(X2))2ndspos#(X1, X2)
2ndspos#(ok(X1), ok(X2))2ndspos#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

2ndspos#(mark(X1), X2)2ndspos#(X1, X2)2ndspos#(ok(X1), ok(X2))2ndspos#(X1, X2)

Problem 17: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

2ndspos#(X1, mark(X2))2ndspos#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

2ndspos#(X1, mark(X2))2ndspos#(X1, X2)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

2ndsneg#(X1, mark(X2))2ndsneg#(X1, X2)2ndsneg#(mark(X1), X2)2ndsneg#(X1, X2)
2ndsneg#(ok(X1), ok(X2))2ndsneg#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

2ndsneg#(mark(X1), X2)2ndsneg#(X1, X2)2ndsneg#(ok(X1), ok(X2))2ndsneg#(X1, X2)

Problem 18: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

2ndsneg#(X1, mark(X2))2ndsneg#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons

Strategy


Function Precedence

plus = posrecip = negrecip = rnil = 2ndsneg# = mark = from = rcons = 2ndspos = 0 = s = times = 2ndsneg = active = ok = square = proper = pi = top = cons = nil

Argument Filtering

plus: 1
posrecip: all arguments are removed from posrecip
negrecip: collapses to 1
rnil: all arguments are removed from rnil
2ndsneg#: 2
mark: 1
from: all arguments are removed from from
rcons: all arguments are removed from rcons
2ndspos: all arguments are removed from 2ndspos
0: all arguments are removed from 0
s: all arguments are removed from s
times: all arguments are removed from times
2ndsneg: 1 2
active: collapses to 1
ok: all arguments are removed from ok
square: all arguments are removed from square
proper: all arguments are removed from proper
pi: 1
top: collapses to 1
cons: 1 2
nil: all arguments are removed from nil

Status

plus: lexicographic with permutation 1 → 1
posrecip: multiset
rnil: multiset
2ndsneg#: lexicographic with permutation 2 → 1
mark: multiset
from: multiset
rcons: multiset
2ndspos: multiset
0: multiset
s: multiset
times: multiset
2ndsneg: lexicographic with permutation 1 → 1 2 → 2
ok: multiset
square: multiset
proper: multiset
pi: lexicographic with permutation 1 → 1
cons: lexicographic with permutation 1 → 2 2 → 1
nil: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

2ndsneg#(X1, mark(X2)) → 2ndsneg#(X1, X2)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

from#(mark(X))from#(X)from#(ok(X))from#(X)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

from#(mark(X))from#(X)from#(ok(X))from#(X)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

negrecip#(ok(X))negrecip#(X)negrecip#(mark(X))negrecip#(X)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

negrecip#(ok(X))negrecip#(X)negrecip#(mark(X))negrecip#(X)

Problem 10: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 11: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Problem 12: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

rcons#(ok(X1), ok(X2))rcons#(X1, X2)rcons#(mark(X1), X2)rcons#(X1, X2)
rcons#(X1, mark(X2))rcons#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

rcons#(ok(X1), ok(X2))rcons#(X1, X2)rcons#(mark(X1), X2)rcons#(X1, X2)

Problem 19: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

rcons#(X1, mark(X2))rcons#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

rcons#(X1, mark(X2))rcons#(X1, X2)

Problem 13: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

times#(ok(X1), ok(X2))times#(X1, X2)times#(X1, mark(X2))times#(X1, X2)
times#(mark(X1), X2)times#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

times#(ok(X1), ok(X2))times#(X1, X2)times#(mark(X1), X2)times#(X1, X2)

Problem 20: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

times#(X1, mark(X2))times#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons

Strategy


Function Precedence

times# < mark < plus = posrecip = negrecip = rnil = from = rcons = 2ndspos = 0 = s = times = 2ndsneg = active = ok = square = proper = pi = top = cons = nil

Argument Filtering

plus: all arguments are removed from plus
posrecip: all arguments are removed from posrecip
negrecip: all arguments are removed from negrecip
rnil: all arguments are removed from rnil
mark: 1
from: all arguments are removed from from
rcons: collapses to 2
2ndspos: all arguments are removed from 2ndspos
0: all arguments are removed from 0
times#: 2
s: all arguments are removed from s
times: all arguments are removed from times
2ndsneg: 1 2
active: all arguments are removed from active
ok: all arguments are removed from ok
square: collapses to 1
proper: collapses to 1
pi: collapses to 1
top: all arguments are removed from top
cons: 1 2
nil: all arguments are removed from nil

Status

plus: multiset
posrecip: multiset
negrecip: multiset
rnil: multiset
mark: multiset
from: multiset
2ndspos: multiset
0: multiset
times#: lexicographic with permutation 2 → 1
s: multiset
times: multiset
2ndsneg: lexicographic with permutation 1 → 2 2 → 1
active: multiset
ok: multiset
top: multiset
cons: lexicographic with permutation 1 → 2 2 → 1
nil: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

times#(X1, mark(X2)) → times#(X1, X2)

Problem 14: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

plus#(ok(X1), ok(X2))plus#(X1, X2)plus#(X1, mark(X2))plus#(X1, X2)
plus#(mark(X1), X2)plus#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

plus#(ok(X1), ok(X2))plus#(X1, X2)plus#(mark(X1), X2)plus#(X1, X2)

Problem 21: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

plus#(X1, mark(X2))plus#(X1, X2)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, proper, square, pi, top, nil, cons

Strategy


Function Precedence

plus = posrecip = negrecip = rnil = mark = from = rcons = 2ndspos = 0 = s = times = 2ndsneg = active = plus# = ok = square = proper = pi = top = cons = nil

Argument Filtering

plus: all arguments are removed from plus
posrecip: all arguments are removed from posrecip
negrecip: all arguments are removed from negrecip
rnil: all arguments are removed from rnil
mark: 1
from: all arguments are removed from from
rcons: all arguments are removed from rcons
2ndspos: all arguments are removed from 2ndspos
0: all arguments are removed from 0
s: all arguments are removed from s
times: all arguments are removed from times
2ndsneg: all arguments are removed from 2ndsneg
active: all arguments are removed from active
plus#: 1 2
ok: all arguments are removed from ok
square: collapses to 1
proper: all arguments are removed from proper
pi: collapses to 1
top: all arguments are removed from top
cons: all arguments are removed from cons
nil: all arguments are removed from nil

Status

plus: multiset
posrecip: multiset
negrecip: multiset
rnil: multiset
mark: multiset
from: multiset
rcons: multiset
2ndspos: multiset
0: multiset
s: multiset
times: multiset
2ndsneg: multiset
active: multiset
plus#: multiset
ok: multiset
proper: multiset
top: multiset
cons: multiset
nil: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

plus#(X1, mark(X2)) → plus#(X1, X2)

Problem 15: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(from(X))active#(X)active#(2ndspos(X1, X2))active#(X2)
active#(2ndsneg(X1, X2))active#(X2)active#(pi(X))active#(X)
active#(posrecip(X))active#(X)active#(times(X1, X2))active#(X1)
active#(plus(X1, X2))active#(X1)active#(square(X))active#(X)
active#(rcons(X1, X2))active#(X2)active#(s(X))active#(X)
active#(2ndspos(X1, X2))active#(X1)active#(negrecip(X))active#(X)
active#(times(X1, X2))active#(X2)active#(plus(X1, X2))active#(X2)
active#(2ndsneg(X1, X2))active#(X1)active#(rcons(X1, X2))active#(X1)
active#(cons(X1, X2))active#(X1)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(from(X))active#(X)active#(2ndspos(X1, X2))active#(X2)
active#(2ndsneg(X1, X2))active#(X2)active#(pi(X))active#(X)
active#(posrecip(X))active#(X)active#(times(X1, X2))active#(X1)
active#(plus(X1, X2))active#(X1)active#(square(X))active#(X)
active#(rcons(X1, X2))active#(X2)active#(s(X))active#(X)
active#(2ndspos(X1, X2))active#(X1)active#(negrecip(X))active#(X)
active#(times(X1, X2))active#(X2)active#(plus(X1, X2))active#(X2)
active#(2ndsneg(X1, X2))active#(X1)active#(rcons(X1, X2))active#(X1)
active#(cons(X1, X2))active#(X1)

Problem 16: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(cons(X1, X2))proper#(X1)proper#(2ndsneg(X1, X2))proper#(X1)
proper#(cons(X1, X2))proper#(X2)proper#(square(X))proper#(X)
proper#(negrecip(X))proper#(X)proper#(times(X1, X2))proper#(X2)
proper#(rcons(X1, X2))proper#(X2)proper#(posrecip(X))proper#(X)
proper#(2ndspos(X1, X2))proper#(X2)proper#(s(X))proper#(X)
proper#(times(X1, X2))proper#(X1)proper#(2ndspos(X1, X2))proper#(X1)
proper#(2ndsneg(X1, X2))proper#(X2)proper#(plus(X1, X2))proper#(X1)
proper#(pi(X))proper#(X)proper#(rcons(X1, X2))proper#(X1)
proper#(plus(X1, X2))proper#(X2)proper#(from(X))proper#(X)

Rewrite Rules

active(from(X))mark(cons(X, from(s(X))))active(2ndspos(0, Z))mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z))))mark(rcons(posrecip(Y), 2ndsneg(N, Z)))active(2ndsneg(0, Z))mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z))))mark(rcons(negrecip(Y), 2ndspos(N, Z)))active(pi(X))mark(2ndspos(X, from(0)))
active(plus(0, Y))mark(Y)active(plus(s(X), Y))mark(s(plus(X, Y)))
active(times(0, Y))mark(0)active(times(s(X), Y))mark(plus(Y, times(X, Y)))
active(square(X))mark(times(X, X))active(s(X))s(active(X))
active(posrecip(X))posrecip(active(X))active(negrecip(X))negrecip(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(rcons(X1, X2))rcons(active(X1), X2)
active(rcons(X1, X2))rcons(X1, active(X2))active(from(X))from(active(X))
active(2ndspos(X1, X2))2ndspos(active(X1), X2)active(2ndspos(X1, X2))2ndspos(X1, active(X2))
active(2ndsneg(X1, X2))2ndsneg(active(X1), X2)active(2ndsneg(X1, X2))2ndsneg(X1, active(X2))
active(pi(X))pi(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(times(X1, X2))times(active(X1), X2)
active(times(X1, X2))times(X1, active(X2))active(square(X))square(active(X))
s(mark(X))mark(s(X))posrecip(mark(X))mark(posrecip(X))
negrecip(mark(X))mark(negrecip(X))cons(mark(X1), X2)mark(cons(X1, X2))
rcons(mark(X1), X2)mark(rcons(X1, X2))rcons(X1, mark(X2))mark(rcons(X1, X2))
from(mark(X))mark(from(X))2ndspos(mark(X1), X2)mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2))mark(2ndspos(X1, X2))2ndsneg(mark(X1), X2)mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2))mark(2ndsneg(X1, X2))pi(mark(X))mark(pi(X))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
times(mark(X1), X2)mark(times(X1, X2))times(X1, mark(X2))mark(times(X1, X2))
square(mark(X))mark(square(X))proper(0)ok(0)
proper(s(X))s(proper(X))proper(posrecip(X))posrecip(proper(X))
proper(negrecip(X))negrecip(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(rnil)ok(rnil)
proper(rcons(X1, X2))rcons(proper(X1), proper(X2))proper(from(X))from(proper(X))
proper(2ndspos(X1, X2))2ndspos(proper(X1), proper(X2))proper(2ndsneg(X1, X2))2ndsneg(proper(X1), proper(X2))
proper(pi(X))pi(proper(X))proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(times(X1, X2))times(proper(X1), proper(X2))proper(square(X))square(proper(X))
s(ok(X))ok(s(X))posrecip(ok(X))ok(posrecip(X))
negrecip(ok(X))ok(negrecip(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
rcons(ok(X1), ok(X2))ok(rcons(X1, X2))from(ok(X))ok(from(X))
2ndspos(ok(X1), ok(X2))ok(2ndspos(X1, X2))2ndsneg(ok(X1), ok(X2))ok(2ndsneg(X1, X2))
pi(ok(X))ok(pi(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
times(ok(X1), ok(X2))ok(times(X1, X2))square(ok(X))ok(square(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, posrecip, negrecip, rnil, mark, from, rcons, 2ndspos, 0, s, times, 2ndsneg, active, ok, square, proper, pi, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(cons(X1, X2))proper#(X1)proper#(2ndsneg(X1, X2))proper#(X1)
proper#(cons(X1, X2))proper#(X2)proper#(square(X))proper#(X)
proper#(negrecip(X))proper#(X)proper#(times(X1, X2))proper#(X2)
proper#(rcons(X1, X2))proper#(X2)proper#(2ndspos(X1, X2))proper#(X2)
proper#(posrecip(X))proper#(X)proper#(s(X))proper#(X)
proper#(times(X1, X2))proper#(X1)proper#(2ndspos(X1, X2))proper#(X1)
proper#(2ndsneg(X1, X2))proper#(X2)proper#(plus(X1, X2))proper#(X1)
proper#(pi(X))proper#(X)proper#(plus(X1, X2))proper#(X2)
proper#(rcons(X1, X2))proper#(X1)proper#(from(X))proper#(X)