YES

The TRS could be proven terminating. The proof took 685 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (37ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (317ms).
 |    | – Problem 5 was processed with processor DependencyGraph (15ms).
 |    |    | – Problem 6 was processed with processor PolynomialLinearRange4iUR (26ms).
 |    |    |    | – Problem 7 was processed with processor PolynomialLinearRange4iUR (58ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 4 was processed with processor DependencyGraph (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__from#(X)mark#(X)a__length#(cons(X, Y))a__length1#(Y)
a__length1#(X)a__length#(X)mark#(from(X))a__from#(mark(X))
mark#(from(X))mark#(X)mark#(cons(X1, X2))mark#(X1)
mark#(s(X))mark#(X)mark#(length1(X))a__length1#(X)
mark#(length(X))a__length#(X)

Rewrite Rules

a__from(X)cons(mark(X), from(s(X)))a__length(nil)0
a__length(cons(X, Y))s(a__length1(Y))a__length1(X)a__length(X)
mark(from(X))a__from(mark(X))mark(length(X))a__length(X)
mark(length1(X))a__length1(X)mark(cons(X1, X2))cons(mark(X1), X2)
mark(s(X))s(mark(X))mark(nil)nil
mark(0)0a__from(X)from(X)
a__length(X)length(X)a__length1(X)length1(X)

Original Signature

Termination of terms over the following signature is verified: 0, s, a__length, length, mark, from, length1, a__length1, a__from, cons, nil

Strategy


The following SCCs where found

a__from#(X) → mark#(X)mark#(from(X)) → a__from#(mark(X))
mark#(from(X)) → mark#(X)mark#(cons(X1, X2)) → mark#(X1)
mark#(s(X)) → mark#(X)

a__length#(cons(X, Y)) → a__length1#(Y)a__length1#(X) → a__length#(X)

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

a__from#(X)mark#(X)mark#(from(X))a__from#(mark(X))
mark#(from(X))mark#(X)mark#(cons(X1, X2))mark#(X1)
mark#(s(X))mark#(X)

Rewrite Rules

a__from(X)cons(mark(X), from(s(X)))a__length(nil)0
a__length(cons(X, Y))s(a__length1(Y))a__length1(X)a__length(X)
mark(from(X))a__from(mark(X))mark(length(X))a__length(X)
mark(length1(X))a__length1(X)mark(cons(X1, X2))cons(mark(X1), X2)
mark(s(X))s(mark(X))mark(nil)nil
mark(0)0a__from(X)from(X)
a__length(X)length(X)a__length1(X)length1(X)

Original Signature

Termination of terms over the following signature is verified: 0, s, a__length, length, mark, from, length1, a__length1, a__from, cons, nil

Strategy


Polynomial Interpretation

Improved Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
a__from(X)from(X)mark(length1(X))a__length1(X)
a__from(X)cons(mark(X), from(s(X)))a__length1(X)a__length(X)
mark(length(X))a__length(X)a__length(X)length(X)
a__length(cons(X, Y))s(a__length1(Y))mark(s(X))s(mark(X))
mark(from(X))a__from(mark(X))mark(nil)nil
a__length1(X)length1(X)a__length(nil)0

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(from(X))a__from#(mark(X))mark#(from(X))mark#(X)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__from#(X)mark#(X)mark#(cons(X1, X2))mark#(X1)
mark#(s(X))mark#(X)

Rewrite Rules

a__from(X)cons(mark(X), from(s(X)))a__length(nil)0
a__length(cons(X, Y))s(a__length1(Y))a__length1(X)a__length(X)
mark(from(X))a__from(mark(X))mark(length(X))a__length(X)
mark(length1(X))a__length1(X)mark(cons(X1, X2))cons(mark(X1), X2)
mark(s(X))s(mark(X))mark(nil)nil
mark(0)0a__from(X)from(X)
a__length(X)length(X)a__length1(X)length1(X)

Original Signature

Termination of terms over the following signature is verified: 0, s, a__length, length, mark, length1, from, a__length1, a__from, nil, cons

Strategy


The following SCCs where found

mark#(cons(X1, X2)) → mark#(X1)mark#(s(X)) → mark#(X)

Problem 6: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

mark#(cons(X1, X2))mark#(X1)mark#(s(X))mark#(X)

Rewrite Rules

a__from(X)cons(mark(X), from(s(X)))a__length(nil)0
a__length(cons(X, Y))s(a__length1(Y))a__length1(X)a__length(X)
mark(from(X))a__from(mark(X))mark(length(X))a__length(X)
mark(length1(X))a__length1(X)mark(cons(X1, X2))cons(mark(X1), X2)
mark(s(X))s(mark(X))mark(nil)nil
mark(0)0a__from(X)from(X)
a__length(X)length(X)a__length1(X)length1(X)

Original Signature

Termination of terms over the following signature is verified: 0, s, a__length, length, mark, length1, from, a__length1, a__from, nil, cons

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(s(X))mark#(X)

Problem 7: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

mark#(cons(X1, X2))mark#(X1)

Rewrite Rules

a__from(X)cons(mark(X), from(s(X)))a__length(nil)0
a__length(cons(X, Y))s(a__length1(Y))a__length1(X)a__length(X)
mark(from(X))a__from(mark(X))mark(length(X))a__length(X)
mark(length1(X))a__length1(X)mark(cons(X1, X2))cons(mark(X1), X2)
mark(s(X))s(mark(X))mark(nil)nil
mark(0)0a__from(X)from(X)
a__length(X)length(X)a__length1(X)length1(X)

Original Signature

Termination of terms over the following signature is verified: 0, s, a__length, length, mark, from, length1, a__length1, a__from, cons, nil

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(cons(X1, X2))mark#(X1)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

a__length#(cons(X, Y))a__length1#(Y)a__length1#(X)a__length#(X)

Rewrite Rules

a__from(X)cons(mark(X), from(s(X)))a__length(nil)0
a__length(cons(X, Y))s(a__length1(Y))a__length1(X)a__length(X)
mark(from(X))a__from(mark(X))mark(length(X))a__length(X)
mark(length1(X))a__length1(X)mark(cons(X1, X2))cons(mark(X1), X2)
mark(s(X))s(mark(X))mark(nil)nil
mark(0)0a__from(X)from(X)
a__length(X)length(X)a__length1(X)length1(X)

Original Signature

Termination of terms over the following signature is verified: 0, s, a__length, length, mark, from, length1, a__length1, a__from, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

a__length#(cons(X, Y))a__length1#(Y)

Problem 4: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__length1#(X)a__length#(X)

Rewrite Rules

a__from(X)cons(mark(X), from(s(X)))a__length(nil)0
a__length(cons(X, Y))s(a__length1(Y))a__length1(X)a__length(X)
mark(from(X))a__from(mark(X))mark(length(X))a__length(X)
mark(length1(X))a__length1(X)mark(cons(X1, X2))cons(mark(X1), X2)
mark(s(X))s(mark(X))mark(nil)nil
mark(0)0a__from(X)from(X)
a__length(X)length(X)a__length1(X)length1(X)

Original Signature

Termination of terms over the following signature is verified: 0, s, a__length, length, mark, length1, from, a__length1, a__from, nil, cons

Strategy


There are no SCCs!