TIMEOUT
The TRS could not be proven terminating. The proof attempt took 60017 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (219ms).
| Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (1469ms), DependencyGraph (5ms), PolynomialLinearRange8NegiUR (5422ms), DependencyGraph (4ms), ReductionPairSAT (1419ms), DependencyGraph (3ms), SizeChangePrinciple (408ms)].
| Problem 3 was processed with processor SubtermCriterion (1ms).
| Problem 4 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (3959ms), DependencyGraph (5ms), PolynomialLinearRange8NegiUR (15025ms), DependencyGraph (5ms), ReductionPairSAT (10330ms), DependencyGraph (7ms), SizeChangePrinciple (timeout)].
The following open problems remain:
Open Dependency Pair Problem 2
Dependency Pairs
plus#(id(x), s(y)) | → | plus#(x, if(gt(s(y), y), y, s(y))) | | plus#(s(x), s(y)) | → | plus#(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) |
plus#(s(x), x) | → | plus#(if(gt(x, x), id(x), id(x)), s(x)) |
Rewrite Rules
times(x, plus(y, s(z))) | → | plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) | | times(x, 0) | → | 0 |
times(x, s(y)) | → | plus(times(x, y), x) | | plus(s(x), s(y)) | → | s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) |
plus(s(x), x) | → | plus(if(gt(x, x), id(x), id(x)), s(x)) | | plus(zero, y) | → | y |
plus(id(x), s(y)) | → | s(plus(x, if(gt(s(y), y), y, s(y)))) | | id(x) | → | x |
if(true, x, y) | → | x | | if(false, x, y) | → | y |
not(x) | → | if(x, false, true) | | gt(s(x), zero) | → | true |
gt(zero, y) | → | false | | gt(s(x), s(y)) | → | gt(x, y) |
Original Signature
Termination of terms over the following signature is verified: not, id, plus, 0, s, times, if, false, true, gt, zero
Open Dependency Pair Problem 4
Dependency Pairs
times#(x, plus(y, s(z))) | → | times#(x, plus(y, times(s(z), 0))) | | times#(x, plus(y, s(z))) | → | times#(x, s(z)) |
times#(x, plus(y, s(z))) | → | times#(s(z), 0) | | times#(x, s(y)) | → | times#(x, y) |
Rewrite Rules
times(x, plus(y, s(z))) | → | plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) | | times(x, 0) | → | 0 |
times(x, s(y)) | → | plus(times(x, y), x) | | plus(s(x), s(y)) | → | s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) |
plus(s(x), x) | → | plus(if(gt(x, x), id(x), id(x)), s(x)) | | plus(zero, y) | → | y |
plus(id(x), s(y)) | → | s(plus(x, if(gt(s(y), y), y, s(y)))) | | id(x) | → | x |
if(true, x, y) | → | x | | if(false, x, y) | → | y |
not(x) | → | if(x, false, true) | | gt(s(x), zero) | → | true |
gt(zero, y) | → | false | | gt(s(x), s(y)) | → | gt(x, y) |
Original Signature
Termination of terms over the following signature is verified: not, id, plus, 0, s, times, if, false, true, gt, zero
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
plus#(s(x), x) | → | id#(x) | | plus#(id(x), s(y)) | → | plus#(x, if(gt(s(y), y), y, s(y))) |
plus#(id(x), s(y)) | → | gt#(s(y), y) | | plus#(s(x), s(y)) | → | gt#(x, y) |
plus#(s(x), x) | → | plus#(if(gt(x, x), id(x), id(x)), s(x)) | | plus#(s(x), s(y)) | → | if#(gt(x, y), x, y) |
plus#(s(x), x) | → | gt#(x, x) | | plus#(id(x), s(y)) | → | if#(gt(s(y), y), y, s(y)) |
times#(x, s(y)) | → | times#(x, y) | | times#(x, plus(y, s(z))) | → | plus#(times(x, plus(y, times(s(z), 0))), times(x, s(z))) |
times#(x, plus(y, s(z))) | → | times#(x, plus(y, times(s(z), 0))) | | plus#(s(x), s(y)) | → | id#(x) |
plus#(s(x), x) | → | if#(gt(x, x), id(x), id(x)) | | times#(x, plus(y, s(z))) | → | times#(x, s(z)) |
times#(x, plus(y, s(z))) | → | plus#(y, times(s(z), 0)) | | plus#(s(x), s(y)) | → | plus#(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) |
times#(x, s(y)) | → | plus#(times(x, y), x) | | plus#(s(x), s(y)) | → | if#(not(gt(x, y)), id(x), id(y)) |
gt#(s(x), s(y)) | → | gt#(x, y) | | times#(x, plus(y, s(z))) | → | times#(s(z), 0) |
not#(x) | → | if#(x, false, true) | | plus#(s(x), s(y)) | → | not#(gt(x, y)) |
plus#(s(x), s(y)) | → | id#(y) |
Rewrite Rules
times(x, plus(y, s(z))) | → | plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) | | times(x, 0) | → | 0 |
times(x, s(y)) | → | plus(times(x, y), x) | | plus(s(x), s(y)) | → | s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) |
plus(s(x), x) | → | plus(if(gt(x, x), id(x), id(x)), s(x)) | | plus(zero, y) | → | y |
plus(id(x), s(y)) | → | s(plus(x, if(gt(s(y), y), y, s(y)))) | | id(x) | → | x |
if(true, x, y) | → | x | | if(false, x, y) | → | y |
not(x) | → | if(x, false, true) | | gt(s(x), zero) | → | true |
gt(zero, y) | → | false | | gt(s(x), s(y)) | → | gt(x, y) |
Original Signature
Termination of terms over the following signature is verified: id, not, plus, 0, s, times, if, true, false, gt, zero
Strategy
The following SCCs where found
plus#(id(x), s(y)) → plus#(x, if(gt(s(y), y), y, s(y))) | plus#(s(x), s(y)) → plus#(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) |
plus#(s(x), x) → plus#(if(gt(x, x), id(x), id(x)), s(x)) |
gt#(s(x), s(y)) → gt#(x, y) |
times#(x, plus(y, s(z))) → times#(x, plus(y, times(s(z), 0))) | times#(x, plus(y, s(z))) → times#(x, s(z)) |
times#(x, plus(y, s(z))) → times#(s(z), 0) | times#(x, s(y)) → times#(x, y) |
Problem 3: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
gt#(s(x), s(y)) | → | gt#(x, y) |
Rewrite Rules
times(x, plus(y, s(z))) | → | plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) | | times(x, 0) | → | 0 |
times(x, s(y)) | → | plus(times(x, y), x) | | plus(s(x), s(y)) | → | s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) |
plus(s(x), x) | → | plus(if(gt(x, x), id(x), id(x)), s(x)) | | plus(zero, y) | → | y |
plus(id(x), s(y)) | → | s(plus(x, if(gt(s(y), y), y, s(y)))) | | id(x) | → | x |
if(true, x, y) | → | x | | if(false, x, y) | → | y |
not(x) | → | if(x, false, true) | | gt(s(x), zero) | → | true |
gt(zero, y) | → | false | | gt(s(x), s(y)) | → | gt(x, y) |
Original Signature
Termination of terms over the following signature is verified: id, not, plus, 0, s, times, if, true, false, gt, zero
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
gt#(s(x), s(y)) | → | gt#(x, y) |