TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60017 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (144ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 remains open; application of the following processors failed [SubtermCriterion (3ms), DependencyGraph (10ms), PolynomialLinearRange4iUR (554ms), DependencyGraph (9ms), PolynomialLinearRange8NegiUR (3040ms), DependencyGraph (9ms), ReductionPairSAT (56195ms)].

The following open problems remain:



Open Dependency Pair Problem 5

Dependency Pairs

if2#(true, x, y, c, edge(u, v, i), j)reach#(v, y, s(c), j, j)if1#(false, x, y, c, i, j)if2#(le(c, size(j)), x, y, c, i, j)
reach#(x, y, c, i, j)if1#(eq(x, y), x, y, c, i, j)if2#(true, x, y, c, edge(u, v, i), j)if2#(true, x, y, c, i, j)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
and(true, y)yand(false, y)false
size(empty)0size(edge(x, y, i))s(size(i))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)reachable(x, y, i)reach(x, y, 0, i, i)
reach(x, y, c, i, j)if1(eq(x, y), x, y, c, i, j)if1(true, x, y, c, i, j)true
if1(false, x, y, c, i, j)if2(le(c, size(j)), x, y, c, i, j)if2(false, x, y, c, i, j)false
if2(true, x, y, c, empty, j)falseif2(true, x, y, c, edge(u, v, i), j)or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Original Signature

Termination of terms over the following signature is verified: edge, or, true, if1, if2, and, size, reach, 0, s, le, reachable, empty, false, eq


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

reachable#(x, y, i)reach#(x, y, 0, i, i)reach#(x, y, c, i, j)eq#(x, y)
if2#(true, x, y, c, edge(u, v, i), j)eq#(x, u)if1#(false, x, y, c, i, j)if2#(le(c, size(j)), x, y, c, i, j)
if1#(false, x, y, c, i, j)le#(c, size(j))if2#(true, x, y, c, edge(u, v, i), j)and#(eq(x, u), reach(v, y, s(c), j, j))
if1#(false, x, y, c, i, j)size#(j)if2#(true, x, y, c, edge(u, v, i), j)or#(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))
le#(s(x), s(y))le#(x, y)if2#(true, x, y, c, edge(u, v, i), j)reach#(v, y, s(c), j, j)
size#(edge(x, y, i))size#(i)eq#(s(x), s(y))eq#(x, y)
if2#(true, x, y, c, edge(u, v, i), j)if2#(true, x, y, c, i, j)reach#(x, y, c, i, j)if1#(eq(x, y), x, y, c, i, j)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
and(true, y)yand(false, y)false
size(empty)0size(edge(x, y, i))s(size(i))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)reachable(x, y, i)reach(x, y, 0, i, i)
reach(x, y, c, i, j)if1(eq(x, y), x, y, c, i, j)if1(true, x, y, c, i, j)true
if1(false, x, y, c, i, j)if2(le(c, size(j)), x, y, c, i, j)if2(false, x, y, c, i, j)false
if2(true, x, y, c, empty, j)falseif2(true, x, y, c, edge(u, v, i), j)or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Original Signature

Termination of terms over the following signature is verified: edge, or, true, if1, if2, and, size, reach, 0, s, le, reachable, empty, false, eq

Strategy


The following SCCs where found

le#(s(x), s(y)) → le#(x, y)

size#(edge(x, y, i)) → size#(i)

eq#(s(x), s(y)) → eq#(x, y)

if2#(true, x, y, c, edge(u, v, i), j) → reach#(v, y, s(c), j, j)if1#(false, x, y, c, i, j) → if2#(le(c, size(j)), x, y, c, i, j)
if2#(true, x, y, c, edge(u, v, i), j) → if2#(true, x, y, c, i, j)reach#(x, y, c, i, j) → if1#(eq(x, y), x, y, c, i, j)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

size#(edge(x, y, i))size#(i)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
and(true, y)yand(false, y)false
size(empty)0size(edge(x, y, i))s(size(i))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)reachable(x, y, i)reach(x, y, 0, i, i)
reach(x, y, c, i, j)if1(eq(x, y), x, y, c, i, j)if1(true, x, y, c, i, j)true
if1(false, x, y, c, i, j)if2(le(c, size(j)), x, y, c, i, j)if2(false, x, y, c, i, j)false
if2(true, x, y, c, empty, j)falseif2(true, x, y, c, edge(u, v, i), j)or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Original Signature

Termination of terms over the following signature is verified: edge, or, true, if1, if2, and, size, reach, 0, s, le, reachable, empty, false, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

size#(edge(x, y, i))size#(i)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

le#(s(x), s(y))le#(x, y)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
and(true, y)yand(false, y)false
size(empty)0size(edge(x, y, i))s(size(i))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)reachable(x, y, i)reach(x, y, 0, i, i)
reach(x, y, c, i, j)if1(eq(x, y), x, y, c, i, j)if1(true, x, y, c, i, j)true
if1(false, x, y, c, i, j)if2(le(c, size(j)), x, y, c, i, j)if2(false, x, y, c, i, j)false
if2(true, x, y, c, empty, j)falseif2(true, x, y, c, edge(u, v, i), j)or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Original Signature

Termination of terms over the following signature is verified: edge, or, true, if1, if2, and, size, reach, 0, s, le, reachable, empty, false, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

le#(s(x), s(y))le#(x, y)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

eq#(s(x), s(y))eq#(x, y)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
and(true, y)yand(false, y)false
size(empty)0size(edge(x, y, i))s(size(i))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)reachable(x, y, i)reach(x, y, 0, i, i)
reach(x, y, c, i, j)if1(eq(x, y), x, y, c, i, j)if1(true, x, y, c, i, j)true
if1(false, x, y, c, i, j)if2(le(c, size(j)), x, y, c, i, j)if2(false, x, y, c, i, j)false
if2(true, x, y, c, empty, j)falseif2(true, x, y, c, edge(u, v, i), j)or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Original Signature

Termination of terms over the following signature is verified: edge, or, true, if1, if2, and, size, reach, 0, s, le, reachable, empty, false, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

eq#(s(x), s(y))eq#(x, y)