TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60002 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (55ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 5 was processed with processor DependencyGraph (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor BackwardInstantiation (4ms).
 |    | – Problem 6 was processed with processor BackwardInstantiation (2ms).
 |    |    | – Problem 7 was processed with processor Propagation (5ms).
 |    |    |    | – Problem 8 remains open; application of the following processors failed [ForwardNarrowing (1ms), BackwardInstantiation (0ms), ForwardInstantiation (1ms), Propagation (2ms)].

The following open problems remain:



Open Dependency Pair Problem 4

Dependency Pairs

if2#(false, x, y)test#(x, s(y))if1#(true, x, y)if2#(divides(x, y), x, y)
test#(x, y)if1#(gt(x, y), x, y)

Rewrite Rules

gt(s(x), 0)truegt(0, y)false
gt(s(x), s(y))gt(x, y)divides(x, y)div(x, y, y)
div(0, 0, z)truediv(0, s(x), z)false
div(s(x), 0, s(z))div(s(x), s(z), s(z))div(s(x), s(y), z)div(x, y, z)
prime(x)test(x, s(s(0)))test(x, y)if1(gt(x, y), x, y)
if1(true, x, y)if2(divides(x, y), x, y)if1(false, x, y)true
if2(true, x, y)falseif2(false, x, y)test(x, s(y))

Original Signature

Termination of terms over the following signature is verified: prime, 0, s, test, div, false, true, if1, divides, gt, if2


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

div#(s(x), 0, s(z))div#(s(x), s(z), s(z))if2#(false, x, y)test#(x, s(y))
divides#(x, y)div#(x, y, y)test#(x, y)gt#(x, y)
test#(x, y)if1#(gt(x, y), x, y)if1#(true, x, y)if2#(divides(x, y), x, y)
gt#(s(x), s(y))gt#(x, y)if1#(true, x, y)divides#(x, y)
prime#(x)test#(x, s(s(0)))div#(s(x), s(y), z)div#(x, y, z)

Rewrite Rules

gt(s(x), 0)truegt(0, y)false
gt(s(x), s(y))gt(x, y)divides(x, y)div(x, y, y)
div(0, 0, z)truediv(0, s(x), z)false
div(s(x), 0, s(z))div(s(x), s(z), s(z))div(s(x), s(y), z)div(x, y, z)
prime(x)test(x, s(s(0)))test(x, y)if1(gt(x, y), x, y)
if1(true, x, y)if2(divides(x, y), x, y)if1(false, x, y)true
if2(true, x, y)falseif2(false, x, y)test(x, s(y))

Original Signature

Termination of terms over the following signature is verified: prime, 0, s, test, div, true, false, gt, divides, if1, if2

Strategy


The following SCCs where found

gt#(s(x), s(y)) → gt#(x, y)

if2#(false, x, y) → test#(x, s(y))test#(x, y) → if1#(gt(x, y), x, y)
if1#(true, x, y) → if2#(divides(x, y), x, y)

div#(s(x), 0, s(z)) → div#(s(x), s(z), s(z))div#(s(x), s(y), z) → div#(x, y, z)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

div#(s(x), 0, s(z))div#(s(x), s(z), s(z))div#(s(x), s(y), z)div#(x, y, z)

Rewrite Rules

gt(s(x), 0)truegt(0, y)false
gt(s(x), s(y))gt(x, y)divides(x, y)div(x, y, y)
div(0, 0, z)truediv(0, s(x), z)false
div(s(x), 0, s(z))div(s(x), s(z), s(z))div(s(x), s(y), z)div(x, y, z)
prime(x)test(x, s(s(0)))test(x, y)if1(gt(x, y), x, y)
if1(true, x, y)if2(divides(x, y), x, y)if1(false, x, y)true
if2(true, x, y)falseif2(false, x, y)test(x, s(y))

Original Signature

Termination of terms over the following signature is verified: prime, 0, s, test, div, true, false, gt, divides, if1, if2

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

div#(s(x), s(y), z)div#(x, y, z)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

div#(s(x), 0, s(z))div#(s(x), s(z), s(z))

Rewrite Rules

gt(s(x), 0)truegt(0, y)false
gt(s(x), s(y))gt(x, y)divides(x, y)div(x, y, y)
div(0, 0, z)truediv(0, s(x), z)false
div(s(x), 0, s(z))div(s(x), s(z), s(z))div(s(x), s(y), z)div(x, y, z)
prime(x)test(x, s(s(0)))test(x, y)if1(gt(x, y), x, y)
if1(true, x, y)if2(divides(x, y), x, y)if1(false, x, y)true
if2(true, x, y)falseif2(false, x, y)test(x, s(y))

Original Signature

Termination of terms over the following signature is verified: prime, 0, s, test, div, false, true, if1, divides, gt, if2

Strategy


There are no SCCs!

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

gt#(s(x), s(y))gt#(x, y)

Rewrite Rules

gt(s(x), 0)truegt(0, y)false
gt(s(x), s(y))gt(x, y)divides(x, y)div(x, y, y)
div(0, 0, z)truediv(0, s(x), z)false
div(s(x), 0, s(z))div(s(x), s(z), s(z))div(s(x), s(y), z)div(x, y, z)
prime(x)test(x, s(s(0)))test(x, y)if1(gt(x, y), x, y)
if1(true, x, y)if2(divides(x, y), x, y)if1(false, x, y)true
if2(true, x, y)falseif2(false, x, y)test(x, s(y))

Original Signature

Termination of terms over the following signature is verified: prime, 0, s, test, div, true, false, gt, divides, if1, if2

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

gt#(s(x), s(y))gt#(x, y)

Problem 4: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if2#(false, x, y)test#(x, s(y))test#(x, y)if1#(gt(x, y), x, y)
if1#(true, x, y)if2#(divides(x, y), x, y)

Rewrite Rules

gt(s(x), 0)truegt(0, y)false
gt(s(x), s(y))gt(x, y)divides(x, y)div(x, y, y)
div(0, 0, z)truediv(0, s(x), z)false
div(s(x), 0, s(z))div(s(x), s(z), s(z))div(s(x), s(y), z)div(x, y, z)
prime(x)test(x, s(s(0)))test(x, y)if1(gt(x, y), x, y)
if1(true, x, y)if2(divides(x, y), x, y)if1(false, x, y)true
if2(true, x, y)falseif2(false, x, y)test(x, s(y))

Original Signature

Termination of terms over the following signature is verified: prime, 0, s, test, div, true, false, gt, divides, if1, if2

Strategy


Instantiation

For all potential predecessors l → r of the rule test#(x, y) → if1#(gt(x, y), x, y) on dependency pair chains it holds that: Thus, test#(x, y) → if1#(gt(x, y), x, y) is replaced by instances determined through the above matching. These instances are:
test#(_x, s(_y)) → if1#(gt(_x, s(_y)), _x, s(_y))

Problem 6: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if2#(false, x, y)test#(x, s(y))if1#(true, x, y)if2#(divides(x, y), x, y)
test#(_x, s(_y))if1#(gt(_x, s(_y)), _x, s(_y))

Rewrite Rules

gt(s(x), 0)truegt(0, y)false
gt(s(x), s(y))gt(x, y)divides(x, y)div(x, y, y)
div(0, 0, z)truediv(0, s(x), z)false
div(s(x), 0, s(z))div(s(x), s(z), s(z))div(s(x), s(y), z)div(x, y, z)
prime(x)test(x, s(s(0)))test(x, y)if1(gt(x, y), x, y)
if1(true, x, y)if2(divides(x, y), x, y)if1(false, x, y)true
if2(true, x, y)falseif2(false, x, y)test(x, s(y))

Original Signature

Termination of terms over the following signature is verified: prime, 0, s, test, div, false, true, if1, divides, gt, if2

Strategy


Instantiation

For all potential predecessors l → r of the rule test#(_x, s(_y)) → if1#(gt(_x, s(_y)), _x, s(_y)) on dependency pair chains it holds that: Thus, test#(_x, s(_y)) → if1#(gt(_x, s(_y)), _x, s(_y)) is replaced by instances determined through the above matching. These instances are:
test#(x, s(y)) → if1#(gt(x, s(y)), x, s(y))

Problem 7: Propagation



Dependency Pair Problem

Dependency Pairs

if2#(false, x, y)test#(x, s(y))test#(x, s(y))if1#(gt(x, s(y)), x, s(y))
if1#(true, x, y)if2#(divides(x, y), x, y)

Rewrite Rules

gt(s(x), 0)truegt(0, y)false
gt(s(x), s(y))gt(x, y)divides(x, y)div(x, y, y)
div(0, 0, z)truediv(0, s(x), z)false
div(s(x), 0, s(z))div(s(x), s(z), s(z))div(s(x), s(y), z)div(x, y, z)
prime(x)test(x, s(s(0)))test(x, y)if1(gt(x, y), x, y)
if1(true, x, y)if2(divides(x, y), x, y)if1(false, x, y)true
if2(true, x, y)falseif2(false, x, y)test(x, s(y))

Original Signature

Termination of terms over the following signature is verified: prime, 0, s, test, div, true, false, gt, divides, if1, if2

Strategy


The dependency pairs if2#(false, x, y) → test#(x, s(y)) and test#(x, s(y)) → if1#(gt(x, s(y)), x, s(y)) are consolidated into the rule if2#(false, x, y) → if1#(gt(x, s(y)), x, s(y)) .

This is possible as

The dependency pairs if2#(false, x, y) → test#(x, s(y)) and test#(x, s(y)) → if1#(gt(x, s(y)), x, s(y)) are consolidated into the rule if2#(false, x, y) → if1#(gt(x, s(y)), x, s(y)) .

This is possible as

The dependency pairs if2#(false, x, y) → test#(x, s(y)) and test#(x, s(y)) → if1#(gt(x, s(y)), x, s(y)) are consolidated into the rule if2#(false, x, y) → if1#(gt(x, s(y)), x, s(y)) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
test#(x, s(y)) → if1#(gt(x, s(y)), x, s(y))if2#(false, x, y) → if1#(gt(x, s(y)), x, s(y))
if2#(false, x, y) → test#(x, s(y))