TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60000 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (82ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor BackwardInstantiation (5ms).
 |    | – Problem 6 was processed with processor BackwardInstantiation (4ms).
 |    |    | – Problem 7 was processed with processor Propagation (7ms).
 |    |    |    | – Problem 8 remains open; application of the following processors failed [ForwardNarrowing (2ms), BackwardInstantiation (2ms), ForwardInstantiation (1ms), Propagation (4ms)].
 | – Problem 4 was processed with processor SubtermCriterion (2ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 3

Dependency Pairs

if3#(false, x, y)gen#(s(x))if1#(true, x)if2#(x, x)
gen#(x)if1#(le(x, 10), x)if3#(true, x, y)if2#(x, s(y))
if2#(x, y)if3#(le(y, 10), x, y)

Rewrite Rules

tablegen(s(0))gen(x)if1(le(x, 10), x)
if1(false, x)nilif1(true, x)if2(x, x)
if2(x, y)if3(le(y, 10), x, y)if3(true, x, y)cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y)gen(s(x))le(0, y)true
le(s(x), 0)falsele(s(x), s(y))le(x, y)
plus(0, y)yplus(s(x), y)s(plus(x, y))
times(0, y)0times(s(x), y)plus(y, times(x, y))
10s(s(s(s(s(s(s(s(s(s(0))))))))))

Original Signature

Termination of terms over the following signature is verified: plus, gen, if3, true, if1, table, if2, 10, 0, s, le, times, entry, false, cons, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

if3#(false, x, y)gen#(s(x))gen#(x)10#
if1#(true, x)if2#(x, x)if2#(x, y)le#(y, 10)
times#(s(x), y)times#(x, y)if2#(x, y)10#
times#(s(x), y)plus#(y, times(x, y))if3#(true, x, y)times#(x, y)
table#gen#(s(0))le#(s(x), s(y))le#(x, y)
plus#(s(x), y)plus#(x, y)gen#(x)if1#(le(x, 10), x)
if3#(true, x, y)if2#(x, s(y))gen#(x)le#(x, 10)
if2#(x, y)if3#(le(y, 10), x, y)

Rewrite Rules

tablegen(s(0))gen(x)if1(le(x, 10), x)
if1(false, x)nilif1(true, x)if2(x, x)
if2(x, y)if3(le(y, 10), x, y)if3(true, x, y)cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y)gen(s(x))le(0, y)true
le(s(x), 0)falsele(s(x), s(y))le(x, y)
plus(0, y)yplus(s(x), y)s(plus(x, y))
times(0, y)0times(s(x), y)plus(y, times(x, y))
10s(s(s(s(s(s(s(s(s(s(0))))))))))

Original Signature

Termination of terms over the following signature is verified: plus, gen, if3, true, if1, table, if2, 10, 0, s, le, times, entry, false, nil, cons

Strategy


The following SCCs where found

le#(s(x), s(y)) → le#(x, y)

times#(s(x), y) → times#(x, y)

plus#(s(x), y) → plus#(x, y)

if3#(false, x, y) → gen#(s(x))if1#(true, x) → if2#(x, x)
gen#(x) → if1#(le(x, 10), x)if3#(true, x, y) → if2#(x, s(y))
if2#(x, y) → if3#(le(y, 10), x, y)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

plus#(s(x), y)plus#(x, y)

Rewrite Rules

tablegen(s(0))gen(x)if1(le(x, 10), x)
if1(false, x)nilif1(true, x)if2(x, x)
if2(x, y)if3(le(y, 10), x, y)if3(true, x, y)cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y)gen(s(x))le(0, y)true
le(s(x), 0)falsele(s(x), s(y))le(x, y)
plus(0, y)yplus(s(x), y)s(plus(x, y))
times(0, y)0times(s(x), y)plus(y, times(x, y))
10s(s(s(s(s(s(s(s(s(s(0))))))))))

Original Signature

Termination of terms over the following signature is verified: plus, gen, if3, true, if1, table, if2, 10, 0, s, le, times, entry, false, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

plus#(s(x), y)plus#(x, y)

Problem 3: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if3#(false, x, y)gen#(s(x))if1#(true, x)if2#(x, x)
gen#(x)if1#(le(x, 10), x)if3#(true, x, y)if2#(x, s(y))
if2#(x, y)if3#(le(y, 10), x, y)

Rewrite Rules

tablegen(s(0))gen(x)if1(le(x, 10), x)
if1(false, x)nilif1(true, x)if2(x, x)
if2(x, y)if3(le(y, 10), x, y)if3(true, x, y)cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y)gen(s(x))le(0, y)true
le(s(x), 0)falsele(s(x), s(y))le(x, y)
plus(0, y)yplus(s(x), y)s(plus(x, y))
times(0, y)0times(s(x), y)plus(y, times(x, y))
10s(s(s(s(s(s(s(s(s(s(0))))))))))

Original Signature

Termination of terms over the following signature is verified: plus, gen, if3, true, if1, table, if2, 10, 0, s, le, times, entry, false, nil, cons

Strategy


Instantiation

For all potential predecessors l → r of the rule gen#(x) → if1#(le(x, 10), x) on dependency pair chains it holds that: Thus, gen#(x) → if1#(le(x, 10), x) is replaced by instances determined through the above matching. These instances are:
gen#(s(_x)) → if1#(le(s(_x), 10), s(_x))

Instantiation

For all potential predecessors l → r of the rule if2#(x, y) → if3#(le(y, 10), x, y) on dependency pair chains it holds that: Thus, if2#(x, y) → if3#(le(y, 10), x, y) is replaced by instances determined through the above matching. These instances are:
if2#(_x, s(_y)) → if3#(le(s(_y), 10), _x, s(_y))if2#(_x, _x) → if3#(le(_x, 10), _x, _x)

Problem 6: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if3#(false, x, y)gen#(s(x))gen#(s(_x))if1#(le(s(_x), 10), s(_x))
if1#(true, x)if2#(x, x)if3#(true, x, y)if2#(x, s(y))
if2#(_x, s(_y))if3#(le(s(_y), 10), _x, s(_y))if2#(_x, _x)if3#(le(_x, 10), _x, _x)

Rewrite Rules

tablegen(s(0))gen(x)if1(le(x, 10), x)
if1(false, x)nilif1(true, x)if2(x, x)
if2(x, y)if3(le(y, 10), x, y)if3(true, x, y)cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y)gen(s(x))le(0, y)true
le(s(x), 0)falsele(s(x), s(y))le(x, y)
plus(0, y)yplus(s(x), y)s(plus(x, y))
times(0, y)0times(s(x), y)plus(y, times(x, y))
10s(s(s(s(s(s(s(s(s(s(0))))))))))

Original Signature

Termination of terms over the following signature is verified: plus, gen, if3, true, if1, table, if2, 10, 0, s, le, times, entry, false, cons, nil

Strategy


Instantiation

For all potential predecessors l → r of the rule gen#(s(_x)) → if1#(le(s(_x), 10), s(_x)) on dependency pair chains it holds that: Thus, gen#(s(_x)) → if1#(le(s(_x), 10), s(_x)) is replaced by instances determined through the above matching. These instances are:
gen#(s(x)) → if1#(le(s(x), 10), s(x))

Problem 7: Propagation



Dependency Pair Problem

Dependency Pairs

if3#(false, x, y)gen#(s(x))if1#(true, x)if2#(x, x)
gen#(s(x))if1#(le(s(x), 10), s(x))if3#(true, x, y)if2#(x, s(y))
if2#(_x, _x)if3#(le(_x, 10), _x, _x)if2#(_x, s(_y))if3#(le(s(_y), 10), _x, s(_y))

Rewrite Rules

tablegen(s(0))gen(x)if1(le(x, 10), x)
if1(false, x)nilif1(true, x)if2(x, x)
if2(x, y)if3(le(y, 10), x, y)if3(true, x, y)cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y)gen(s(x))le(0, y)true
le(s(x), 0)falsele(s(x), s(y))le(x, y)
plus(0, y)yplus(s(x), y)s(plus(x, y))
times(0, y)0times(s(x), y)plus(y, times(x, y))
10s(s(s(s(s(s(s(s(s(s(0))))))))))

Original Signature

Termination of terms over the following signature is verified: plus, gen, if3, true, if1, table, if2, 10, 0, s, le, times, entry, false, nil, cons

Strategy


The dependency pairs if3#(false, x, y) → gen#(s(x)) and gen#(s(x)) → if1#(le(s(x), 10), s(x)) are consolidated into the rule if3#(false, x, y) → if1#(le(s(x), 10), s(x)) .

This is possible as

The dependency pairs if3#(false, x, y) → gen#(s(x)) and gen#(s(x)) → if1#(le(s(x), 10), s(x)) are consolidated into the rule if3#(false, x, y) → if1#(le(s(x), 10), s(x)) .

This is possible as

The dependency pairs if3#(false, x, y) → gen#(s(x)) and gen#(s(x)) → if1#(le(s(x), 10), s(x)) are consolidated into the rule if3#(false, x, y) → if1#(le(s(x), 10), s(x)) .

This is possible as

The dependency pairs if3#(false, x, y) → gen#(s(x)) and gen#(s(x)) → if1#(le(s(x), 10), s(x)) are consolidated into the rule if3#(false, x, y) → if1#(le(s(x), 10), s(x)) .

This is possible as

The dependency pairs if3#(false, x, y) → gen#(s(x)) and gen#(s(x)) → if1#(le(s(x), 10), s(x)) are consolidated into the rule if3#(false, x, y) → if1#(le(s(x), 10), s(x)) .

This is possible as

The dependency pairs if3#(false, x, y) → gen#(s(x)) and gen#(s(x)) → if1#(le(s(x), 10), s(x)) are consolidated into the rule if3#(false, x, y) → if1#(le(s(x), 10), s(x)) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
if3#(false, x, y) → gen#(s(x))if3#(false, x, y) → if1#(le(s(x), 10), s(x))
gen#(s(x)) → if1#(le(s(x), 10), s(x)) 

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

times#(s(x), y)times#(x, y)

Rewrite Rules

tablegen(s(0))gen(x)if1(le(x, 10), x)
if1(false, x)nilif1(true, x)if2(x, x)
if2(x, y)if3(le(y, 10), x, y)if3(true, x, y)cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y)gen(s(x))le(0, y)true
le(s(x), 0)falsele(s(x), s(y))le(x, y)
plus(0, y)yplus(s(x), y)s(plus(x, y))
times(0, y)0times(s(x), y)plus(y, times(x, y))
10s(s(s(s(s(s(s(s(s(s(0))))))))))

Original Signature

Termination of terms over the following signature is verified: plus, gen, if3, true, if1, table, if2, 10, 0, s, le, times, entry, false, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

times#(s(x), y)times#(x, y)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

le#(s(x), s(y))le#(x, y)

Rewrite Rules

tablegen(s(0))gen(x)if1(le(x, 10), x)
if1(false, x)nilif1(true, x)if2(x, x)
if2(x, y)if3(le(y, 10), x, y)if3(true, x, y)cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y)gen(s(x))le(0, y)true
le(s(x), 0)falsele(s(x), s(y))le(x, y)
plus(0, y)yplus(s(x), y)s(plus(x, y))
times(0, y)0times(s(x), y)plus(y, times(x, y))
10s(s(s(s(s(s(s(s(s(s(0))))))))))

Original Signature

Termination of terms over the following signature is verified: plus, gen, if3, true, if1, table, if2, 10, 0, s, le, times, entry, false, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

le#(s(x), s(y))le#(x, y)