TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60043 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (72ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (4ms), PolynomialLinearRange4iUR (564ms), DependencyGraph (4ms), PolynomialLinearRange8NegiUR (14129ms), DependencyGraph (23ms), ReductionPairSAT (timeout)].
 | – Problem 4 was processed with processor SubtermCriterion (0ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 3

Dependency Pairs

if#(false, x, b, y, z)loop#(x, b, times(b, y), s(z))loop#(x, s(s(b)), s(y), z)if#(le(x, s(y)), x, s(s(b)), s(y), z)

Rewrite Rules

le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)plus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(x), y)plus(y, times(x, y))log(x, 0)baseError
log(x, s(0))baseErrorlog(0, s(s(b)))logZeroError
log(s(x), s(s(b)))loop(s(x), s(s(b)), s(0), 0)loop(x, s(s(b)), s(y), z)if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z)zif(false, x, b, y, z)loop(x, b, times(b, y), s(z))

Original Signature

Termination of terms over the following signature is verified: baseError, plus, 0, s, le, times, if, loop, true, false, logZeroError, log


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

times#(s(x), y)plus#(y, times(x, y))le#(s(x), s(y))le#(x, y)
loop#(x, s(s(b)), s(y), z)le#(x, s(y))times#(s(x), y)times#(x, y)
if#(false, x, b, y, z)loop#(x, b, times(b, y), s(z))plus#(s(x), y)plus#(x, y)
if#(false, x, b, y, z)times#(b, y)log#(s(x), s(s(b)))loop#(s(x), s(s(b)), s(0), 0)
loop#(x, s(s(b)), s(y), z)if#(le(x, s(y)), x, s(s(b)), s(y), z)

Rewrite Rules

le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)plus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(x), y)plus(y, times(x, y))log(x, 0)baseError
log(x, s(0))baseErrorlog(0, s(s(b)))logZeroError
log(s(x), s(s(b)))loop(s(x), s(s(b)), s(0), 0)loop(x, s(s(b)), s(y), z)if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z)zif(false, x, b, y, z)loop(x, b, times(b, y), s(z))

Original Signature

Termination of terms over the following signature is verified: plus, baseError, 0, le, s, times, if, loop, false, true, logZeroError, log

Strategy


The following SCCs where found

if#(false, x, b, y, z) → loop#(x, b, times(b, y), s(z))loop#(x, s(s(b)), s(y), z) → if#(le(x, s(y)), x, s(s(b)), s(y), z)

le#(s(x), s(y)) → le#(x, y)

times#(s(x), y) → times#(x, y)

plus#(s(x), y) → plus#(x, y)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

le#(s(x), s(y))le#(x, y)

Rewrite Rules

le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)plus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(x), y)plus(y, times(x, y))log(x, 0)baseError
log(x, s(0))baseErrorlog(0, s(s(b)))logZeroError
log(s(x), s(s(b)))loop(s(x), s(s(b)), s(0), 0)loop(x, s(s(b)), s(y), z)if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z)zif(false, x, b, y, z)loop(x, b, times(b, y), s(z))

Original Signature

Termination of terms over the following signature is verified: plus, baseError, 0, le, s, times, if, loop, false, true, logZeroError, log

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

le#(s(x), s(y))le#(x, y)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

plus#(s(x), y)plus#(x, y)

Rewrite Rules

le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)plus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(x), y)plus(y, times(x, y))log(x, 0)baseError
log(x, s(0))baseErrorlog(0, s(s(b)))logZeroError
log(s(x), s(s(b)))loop(s(x), s(s(b)), s(0), 0)loop(x, s(s(b)), s(y), z)if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z)zif(false, x, b, y, z)loop(x, b, times(b, y), s(z))

Original Signature

Termination of terms over the following signature is verified: plus, baseError, 0, le, s, times, if, loop, false, true, logZeroError, log

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

plus#(s(x), y)plus#(x, y)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

times#(s(x), y)times#(x, y)

Rewrite Rules

le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)plus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(x), y)plus(y, times(x, y))log(x, 0)baseError
log(x, s(0))baseErrorlog(0, s(s(b)))logZeroError
log(s(x), s(s(b)))loop(s(x), s(s(b)), s(0), 0)loop(x, s(s(b)), s(y), z)if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z)zif(false, x, b, y, z)loop(x, b, times(b, y), s(z))

Original Signature

Termination of terms over the following signature is verified: plus, baseError, 0, le, s, times, if, loop, false, true, logZeroError, log

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

times#(s(x), y)times#(x, y)