TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60025 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (79ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).
 | – Problem 5 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (8ms), PolynomialLinearRange4iUR (1224ms), DependencyGraph (7ms), PolynomialLinearRange8NegiUR (timeout), DependencyGraph (5ms), ReductionPairSAT (28646ms)].

The following open problems remain:



Open Dependency Pair Problem 5

Dependency Pairs

if3#(true, x, y)mod#(minus(x, y), s(y))if2#(false, b2, x, y)if3#(b2, x, y)
if_mod#(false, b1, b2, x, y)if2#(b1, b2, x, y)mod#(x, y)if_mod#(zero(x), zero(y), le(y, x), id(x), id(y))

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)zero(0)true
zero(s(x))falseid(0)0
id(s(x))s(id(x))minus(x, 0)x
minus(s(x), s(y))minus(x, y)mod(x, y)if_mod(zero(x), zero(y), le(y, x), id(x), id(y))
if_mod(true, b1, b2, x, y)0if_mod(false, b1, b2, x, y)if2(b1, b2, x, y)
if2(true, b2, x, y)0if2(false, b2, x, y)if3(b2, x, y)
if3(true, x, y)mod(minus(x, y), s(y))if3(false, x, y)x

Original Signature

Termination of terms over the following signature is verified: id, minus, 0, s, le, mod, if3, false, true, if2, zero, if_mod


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

if3#(true, x, y)mod#(minus(x, y), s(y))mod#(x, y)zero#(y)
mod#(x, y)id#(x)id#(s(x))id#(x)
if3#(true, x, y)minus#(x, y)if2#(false, b2, x, y)if3#(b2, x, y)
le#(s(x), s(y))le#(x, y)mod#(x, y)if_mod#(zero(x), zero(y), le(y, x), id(x), id(y))
if_mod#(false, b1, b2, x, y)if2#(b1, b2, x, y)mod#(x, y)le#(y, x)
minus#(s(x), s(y))minus#(x, y)mod#(x, y)zero#(x)
mod#(x, y)id#(y)

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)zero(0)true
zero(s(x))falseid(0)0
id(s(x))s(id(x))minus(x, 0)x
minus(s(x), s(y))minus(x, y)mod(x, y)if_mod(zero(x), zero(y), le(y, x), id(x), id(y))
if_mod(true, b1, b2, x, y)0if_mod(false, b1, b2, x, y)if2(b1, b2, x, y)
if2(true, b2, x, y)0if2(false, b2, x, y)if3(b2, x, y)
if3(true, x, y)mod(minus(x, y), s(y))if3(false, x, y)x

Original Signature

Termination of terms over the following signature is verified: id, 0, minus, le, s, mod, if3, true, false, if2, zero, if_mod

Strategy


The following SCCs where found

id#(s(x)) → id#(x)

le#(s(x), s(y)) → le#(x, y)

minus#(s(x), s(y)) → minus#(x, y)

if3#(true, x, y) → mod#(minus(x, y), s(y))if2#(false, b2, x, y) → if3#(b2, x, y)
mod#(x, y) → if_mod#(zero(x), zero(y), le(y, x), id(x), id(y))if_mod#(false, b1, b2, x, y) → if2#(b1, b2, x, y)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

minus#(s(x), s(y))minus#(x, y)

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)zero(0)true
zero(s(x))falseid(0)0
id(s(x))s(id(x))minus(x, 0)x
minus(s(x), s(y))minus(x, y)mod(x, y)if_mod(zero(x), zero(y), le(y, x), id(x), id(y))
if_mod(true, b1, b2, x, y)0if_mod(false, b1, b2, x, y)if2(b1, b2, x, y)
if2(true, b2, x, y)0if2(false, b2, x, y)if3(b2, x, y)
if3(true, x, y)mod(minus(x, y), s(y))if3(false, x, y)x

Original Signature

Termination of terms over the following signature is verified: id, 0, minus, le, s, mod, if3, true, false, if2, zero, if_mod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

minus#(s(x), s(y))minus#(x, y)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

id#(s(x))id#(x)

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)zero(0)true
zero(s(x))falseid(0)0
id(s(x))s(id(x))minus(x, 0)x
minus(s(x), s(y))minus(x, y)mod(x, y)if_mod(zero(x), zero(y), le(y, x), id(x), id(y))
if_mod(true, b1, b2, x, y)0if_mod(false, b1, b2, x, y)if2(b1, b2, x, y)
if2(true, b2, x, y)0if2(false, b2, x, y)if3(b2, x, y)
if3(true, x, y)mod(minus(x, y), s(y))if3(false, x, y)x

Original Signature

Termination of terms over the following signature is verified: id, 0, minus, le, s, mod, if3, true, false, if2, zero, if_mod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

id#(s(x))id#(x)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

le#(s(x), s(y))le#(x, y)

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)zero(0)true
zero(s(x))falseid(0)0
id(s(x))s(id(x))minus(x, 0)x
minus(s(x), s(y))minus(x, y)mod(x, y)if_mod(zero(x), zero(y), le(y, x), id(x), id(y))
if_mod(true, b1, b2, x, y)0if_mod(false, b1, b2, x, y)if2(b1, b2, x, y)
if2(true, b2, x, y)0if2(false, b2, x, y)if3(b2, x, y)
if3(true, x, y)mod(minus(x, y), s(y))if3(false, x, y)x

Original Signature

Termination of terms over the following signature is verified: id, 0, minus, le, s, mod, if3, true, false, if2, zero, if_mod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

le#(s(x), s(y))le#(x, y)