TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60359 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (56ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (439ms).
 |    | – Problem 4 was processed with processor DependencyGraph (0ms).
 | – Problem 3 was processed with processor BackwardInstantiation (2ms).
 |    | – Problem 5 remains open; application of the following processors failed [ForwardInstantiation (1ms), Propagation (1ms), ForwardNarrowing (2ms), BackwardInstantiation (1ms), ForwardInstantiation (3ms), Propagation (0ms)].

The following open problems remain:



Open Dependency Pair Problem 3

Dependency Pairs

if#(false, x, l)last#(head(l), tail(l))last#(x, l)if#(empty(l), x, l)

Rewrite Rules

empty(nil)trueempty(cons(x, l))false
head(cons(x, l))xtail(nil)nil
tail(cons(x, l))lrev(nil)nil
rev(cons(x, l))cons(rev1(x, l), rev2(x, l))last(x, l)if(empty(l), x, l)
if(true, x, l)xif(false, x, l)last(head(l), tail(l))
rev2(x, nil)nilrev2(x, cons(y, l))rev(cons(x, rev2(y, l)))

Original Signature

Termination of terms over the following signature is verified: rev1, rev, rev2, last, if, empty, false, true, head, tail, cons, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

rev2#(x, cons(y, l))rev2#(y, l)if#(false, x, l)last#(head(l), tail(l))
if#(false, x, l)head#(l)rev#(cons(x, l))rev2#(x, l)
if#(false, x, l)tail#(l)rev2#(x, cons(y, l))rev#(cons(x, rev2(y, l)))
last#(x, l)empty#(l)last#(x, l)if#(empty(l), x, l)

Rewrite Rules

empty(nil)trueempty(cons(x, l))false
head(cons(x, l))xtail(nil)nil
tail(cons(x, l))lrev(nil)nil
rev(cons(x, l))cons(rev1(x, l), rev2(x, l))last(x, l)if(empty(l), x, l)
if(true, x, l)xif(false, x, l)last(head(l), tail(l))
rev2(x, nil)nilrev2(x, cons(y, l))rev(cons(x, rev2(y, l)))

Original Signature

Termination of terms over the following signature is verified: rev, rev1, rev2, last, if, empty, true, false, head, tail, nil, cons

Strategy


The following SCCs where found

if#(false, x, l) → last#(head(l), tail(l))last#(x, l) → if#(empty(l), x, l)

rev2#(x, cons(y, l)) → rev2#(y, l)rev#(cons(x, l)) → rev2#(x, l)
rev2#(x, cons(y, l)) → rev#(cons(x, rev2(y, l)))

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

rev2#(x, cons(y, l))rev2#(y, l)rev#(cons(x, l))rev2#(x, l)
rev2#(x, cons(y, l))rev#(cons(x, rev2(y, l)))

Rewrite Rules

empty(nil)trueempty(cons(x, l))false
head(cons(x, l))xtail(nil)nil
tail(cons(x, l))lrev(nil)nil
rev(cons(x, l))cons(rev1(x, l), rev2(x, l))last(x, l)if(empty(l), x, l)
if(true, x, l)xif(false, x, l)last(head(l), tail(l))
rev2(x, nil)nilrev2(x, cons(y, l))rev(cons(x, rev2(y, l)))

Original Signature

Termination of terms over the following signature is verified: rev, rev1, rev2, last, if, empty, true, false, head, tail, nil, cons

Strategy


Polynomial Interpretation

Improved Usable rules

rev2(x, nil)nilrev(nil)nil
rev(cons(x, l))cons(rev1(x, l), rev2(x, l))rev2(x, cons(y, l))rev(cons(x, rev2(y, l)))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

rev2#(x, cons(y, l))rev2#(y, l)rev#(cons(x, l))rev2#(x, l)

Problem 4: DependencyGraph



Dependency Pair Problem

Dependency Pairs

rev2#(x, cons(y, l))rev#(cons(x, rev2(y, l)))

Rewrite Rules

empty(nil)trueempty(cons(x, l))false
head(cons(x, l))xtail(nil)nil
tail(cons(x, l))lrev(nil)nil
rev(cons(x, l))cons(rev1(x, l), rev2(x, l))last(x, l)if(empty(l), x, l)
if(true, x, l)xif(false, x, l)last(head(l), tail(l))
rev2(x, nil)nilrev2(x, cons(y, l))rev(cons(x, rev2(y, l)))

Original Signature

Termination of terms over the following signature is verified: rev1, rev, rev2, last, if, empty, false, true, head, tail, cons, nil

Strategy


There are no SCCs!

Problem 3: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if#(false, x, l)last#(head(l), tail(l))last#(x, l)if#(empty(l), x, l)

Rewrite Rules

empty(nil)trueempty(cons(x, l))false
head(cons(x, l))xtail(nil)nil
tail(cons(x, l))lrev(nil)nil
rev(cons(x, l))cons(rev1(x, l), rev2(x, l))last(x, l)if(empty(l), x, l)
if(true, x, l)xif(false, x, l)last(head(l), tail(l))
rev2(x, nil)nilrev2(x, cons(y, l))rev(cons(x, rev2(y, l)))

Original Signature

Termination of terms over the following signature is verified: rev, rev1, rev2, last, if, empty, true, false, head, tail, nil, cons

Strategy


Instantiation

For all potential predecessors l → r of the rule last#(x, l) → if#(empty(l), x, l) on dependency pair chains it holds that: Thus, last#(x, l) → if#(empty(l), x, l) is replaced by instances determined through the above matching. These instances are:
last#(head(_l), tail(_l)) → if#(empty(tail(_l)), head(_l), tail(_l))