TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60008 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (219ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (4ms), DependencyGraph (6ms), PolynomialLinearRange4iUR (1830ms), DependencyGraph (5ms), PolynomialLinearRange8NegiUR (10000ms), DependencyGraph (3ms), ReductionPairSAT (546ms), DependencyGraph (4ms), SizeChangePrinciple (timeout)].
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (2ms), PolynomialLinearRange4iUR (86ms), DependencyGraph (3ms), PolynomialLinearRange8NegiUR (2ms), DependencyGraph (2ms), ReductionPairSAT (194ms), DependencyGraph (3ms)].
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (3ms), PolynomialLinearRange4iUR (77ms), DependencyGraph (2ms), PolynomialLinearRange8NegiUR (26ms), DependencyGraph (2ms), ReductionPairSAT (82ms), DependencyGraph (2ms)].
 | – Problem 5 was processed with processor SubtermCriterion (2ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

prod#(l)if#(shorter(l, 0), shorter(l, s(0)), l)if#(false, b, l)if2#(b, l)
if2#(false, l)prod#(cons(times(car(l), cadr(l)), cddr(l)))

Rewrite Rules

car(cons(x, l))xcddr(nil)nil
cddr(cons(x, nil))nilcddr(cons(x, cons(y, l)))l
cadr(cons(x, cons(y, l)))yisZero(0)true
isZero(s(x))falseplus(x, y)ifplus(isZero(x), x, y)
ifplus(true, x, y)yifplus(false, x, y)s(plus(p(x), y))
times(x, y)iftimes(isZero(x), x, y)iftimes(true, x, y)0
iftimes(false, x, y)plus(y, times(p(x), y))p(s(x))x
p(0)0shorter(nil, y)true
shorter(cons(x, l), 0)falseshorter(cons(x, l), s(y))shorter(l, y)
prod(l)if(shorter(l, 0), shorter(l, s(0)), l)if(true, b, l)s(0)
if(false, b, l)if2(b, l)if2(true, l)car(l)
if2(false, l)prod(cons(times(car(l), cadr(l)), cddr(l)))

Original Signature

Termination of terms over the following signature is verified: car, plus, cadr, iftimes, true, if2, cddr, ifplus, 0, s, times, if, p, false, shorter, prod, cons, nil, isZero




Open Dependency Pair Problem 3

Dependency Pairs

iftimes#(false, x, y)times#(p(x), y)times#(x, y)iftimes#(isZero(x), x, y)

Rewrite Rules

car(cons(x, l))xcddr(nil)nil
cddr(cons(x, nil))nilcddr(cons(x, cons(y, l)))l
cadr(cons(x, cons(y, l)))yisZero(0)true
isZero(s(x))falseplus(x, y)ifplus(isZero(x), x, y)
ifplus(true, x, y)yifplus(false, x, y)s(plus(p(x), y))
times(x, y)iftimes(isZero(x), x, y)iftimes(true, x, y)0
iftimes(false, x, y)plus(y, times(p(x), y))p(s(x))x
p(0)0shorter(nil, y)true
shorter(cons(x, l), 0)falseshorter(cons(x, l), s(y))shorter(l, y)
prod(l)if(shorter(l, 0), shorter(l, s(0)), l)if(true, b, l)s(0)
if(false, b, l)if2(b, l)if2(true, l)car(l)
if2(false, l)prod(cons(times(car(l), cadr(l)), cddr(l)))

Original Signature

Termination of terms over the following signature is verified: car, plus, cadr, iftimes, true, if2, cddr, ifplus, 0, s, times, if, p, false, shorter, prod, cons, nil, isZero




Open Dependency Pair Problem 4

Dependency Pairs

plus#(x, y)ifplus#(isZero(x), x, y)ifplus#(false, x, y)plus#(p(x), y)

Rewrite Rules

car(cons(x, l))xcddr(nil)nil
cddr(cons(x, nil))nilcddr(cons(x, cons(y, l)))l
cadr(cons(x, cons(y, l)))yisZero(0)true
isZero(s(x))falseplus(x, y)ifplus(isZero(x), x, y)
ifplus(true, x, y)yifplus(false, x, y)s(plus(p(x), y))
times(x, y)iftimes(isZero(x), x, y)iftimes(true, x, y)0
iftimes(false, x, y)plus(y, times(p(x), y))p(s(x))x
p(0)0shorter(nil, y)true
shorter(cons(x, l), 0)falseshorter(cons(x, l), s(y))shorter(l, y)
prod(l)if(shorter(l, 0), shorter(l, s(0)), l)if(true, b, l)s(0)
if(false, b, l)if2(b, l)if2(true, l)car(l)
if2(false, l)prod(cons(times(car(l), cadr(l)), cddr(l)))

Original Signature

Termination of terms over the following signature is verified: car, plus, cadr, iftimes, true, if2, cddr, ifplus, 0, s, times, if, p, false, shorter, prod, cons, nil, isZero


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

prod#(l)if#(shorter(l, 0), shorter(l, s(0)), l)if2#(false, l)cadr#(l)
iftimes#(false, x, y)plus#(y, times(p(x), y))if2#(true, l)car#(l)
if#(false, b, l)if2#(b, l)times#(x, y)isZero#(x)
ifplus#(false, x, y)p#(x)times#(x, y)iftimes#(isZero(x), x, y)
if2#(false, l)prod#(cons(times(car(l), cadr(l)), cddr(l)))ifplus#(false, x, y)plus#(p(x), y)
iftimes#(false, x, y)p#(x)shorter#(cons(x, l), s(y))shorter#(l, y)
if2#(false, l)car#(l)prod#(l)shorter#(l, 0)
if2#(false, l)cddr#(l)iftimes#(false, x, y)times#(p(x), y)
plus#(x, y)isZero#(x)plus#(x, y)ifplus#(isZero(x), x, y)
if2#(false, l)times#(car(l), cadr(l))prod#(l)shorter#(l, s(0))

Rewrite Rules

car(cons(x, l))xcddr(nil)nil
cddr(cons(x, nil))nilcddr(cons(x, cons(y, l)))l
cadr(cons(x, cons(y, l)))yisZero(0)true
isZero(s(x))falseplus(x, y)ifplus(isZero(x), x, y)
ifplus(true, x, y)yifplus(false, x, y)s(plus(p(x), y))
times(x, y)iftimes(isZero(x), x, y)iftimes(true, x, y)0
iftimes(false, x, y)plus(y, times(p(x), y))p(s(x))x
p(0)0shorter(nil, y)true
shorter(cons(x, l), 0)falseshorter(cons(x, l), s(y))shorter(l, y)
prod(l)if(shorter(l, 0), shorter(l, s(0)), l)if(true, b, l)s(0)
if(false, b, l)if2(b, l)if2(true, l)car(l)
if2(false, l)prod(cons(times(car(l), cadr(l)), cddr(l)))

Original Signature

Termination of terms over the following signature is verified: car, plus, cadr, iftimes, true, if2, cddr, ifplus, 0, s, times, if, p, false, shorter, isZero, nil, cons, prod

Strategy


The following SCCs where found

iftimes#(false, x, y) → times#(p(x), y)times#(x, y) → iftimes#(isZero(x), x, y)

shorter#(cons(x, l), s(y)) → shorter#(l, y)

plus#(x, y) → ifplus#(isZero(x), x, y)ifplus#(false, x, y) → plus#(p(x), y)

prod#(l) → if#(shorter(l, 0), shorter(l, s(0)), l)if#(false, b, l) → if2#(b, l)
if2#(false, l) → prod#(cons(times(car(l), cadr(l)), cddr(l)))

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

shorter#(cons(x, l), s(y))shorter#(l, y)

Rewrite Rules

car(cons(x, l))xcddr(nil)nil
cddr(cons(x, nil))nilcddr(cons(x, cons(y, l)))l
cadr(cons(x, cons(y, l)))yisZero(0)true
isZero(s(x))falseplus(x, y)ifplus(isZero(x), x, y)
ifplus(true, x, y)yifplus(false, x, y)s(plus(p(x), y))
times(x, y)iftimes(isZero(x), x, y)iftimes(true, x, y)0
iftimes(false, x, y)plus(y, times(p(x), y))p(s(x))x
p(0)0shorter(nil, y)true
shorter(cons(x, l), 0)falseshorter(cons(x, l), s(y))shorter(l, y)
prod(l)if(shorter(l, 0), shorter(l, s(0)), l)if(true, b, l)s(0)
if(false, b, l)if2(b, l)if2(true, l)car(l)
if2(false, l)prod(cons(times(car(l), cadr(l)), cddr(l)))

Original Signature

Termination of terms over the following signature is verified: car, plus, cadr, iftimes, true, if2, cddr, ifplus, 0, s, times, if, p, false, shorter, isZero, nil, cons, prod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

shorter#(cons(x, l), s(y))shorter#(l, y)