TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60003 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (60ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor BackwardInstantiation (2ms).
 |    | – Problem 5 remains open; application of the following processors failed [ForwardInstantiation (1ms), Propagation (1ms), ForwardNarrowing (0ms), BackwardInstantiation (1ms), ForwardInstantiation (1ms), Propagation (1ms)].

The following open problems remain:



Open Dependency Pair Problem 4

Dependency Pairs

shuff#(x, y)if#(null(x), x, y, app(y, add(head(x), nil)))if#(false, x, y, z)shuff#(reverse(tail(x)), z)

Rewrite Rules

null(nil)truenull(add(n, x))false
tail(add(n, x))xtail(nil)nil
head(add(n, x))napp(nil, y)y
app(add(n, x), y)add(n, app(x, y))reverse(nil)nil
reverse(add(n, x))app(reverse(x), add(n, nil))shuffle(x)shuff(x, nil)
shuff(x, y)if(null(x), x, y, app(y, add(head(x), nil)))if(true, x, y, z)y
if(false, x, y, z)shuff(reverse(tail(x)), z)

Original Signature

Termination of terms over the following signature is verified: app, reverse, if, shuffle, shuff, false, true, head, add, tail, null, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

shuff#(x, y)if#(null(x), x, y, app(y, add(head(x), nil)))if#(false, x, y, z)tail#(x)
shuff#(x, y)head#(x)app#(add(n, x), y)app#(x, y)
if#(false, x, y, z)shuff#(reverse(tail(x)), z)reverse#(add(n, x))app#(reverse(x), add(n, nil))
shuff#(x, y)app#(y, add(head(x), nil))if#(false, x, y, z)reverse#(tail(x))
shuffle#(x)shuff#(x, nil)reverse#(add(n, x))reverse#(x)
shuff#(x, y)null#(x)

Rewrite Rules

null(nil)truenull(add(n, x))false
tail(add(n, x))xtail(nil)nil
head(add(n, x))napp(nil, y)y
app(add(n, x), y)add(n, app(x, y))reverse(nil)nil
reverse(add(n, x))app(reverse(x), add(n, nil))shuffle(x)shuff(x, nil)
shuff(x, y)if(null(x), x, y, app(y, add(head(x), nil)))if(true, x, y, z)y
if(false, x, y, z)shuff(reverse(tail(x)), z)

Original Signature

Termination of terms over the following signature is verified: app, reverse, shuffle, if, true, false, shuff, add, head, tail, null, nil

Strategy


The following SCCs where found

app#(add(n, x), y) → app#(x, y)

reverse#(add(n, x)) → reverse#(x)

shuff#(x, y) → if#(null(x), x, y, app(y, add(head(x), nil)))if#(false, x, y, z) → shuff#(reverse(tail(x)), z)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

app#(add(n, x), y)app#(x, y)

Rewrite Rules

null(nil)truenull(add(n, x))false
tail(add(n, x))xtail(nil)nil
head(add(n, x))napp(nil, y)y
app(add(n, x), y)add(n, app(x, y))reverse(nil)nil
reverse(add(n, x))app(reverse(x), add(n, nil))shuffle(x)shuff(x, nil)
shuff(x, y)if(null(x), x, y, app(y, add(head(x), nil)))if(true, x, y, z)y
if(false, x, y, z)shuff(reverse(tail(x)), z)

Original Signature

Termination of terms over the following signature is verified: app, reverse, shuffle, if, true, false, shuff, add, head, tail, null, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

app#(add(n, x), y)app#(x, y)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

reverse#(add(n, x))reverse#(x)

Rewrite Rules

null(nil)truenull(add(n, x))false
tail(add(n, x))xtail(nil)nil
head(add(n, x))napp(nil, y)y
app(add(n, x), y)add(n, app(x, y))reverse(nil)nil
reverse(add(n, x))app(reverse(x), add(n, nil))shuffle(x)shuff(x, nil)
shuff(x, y)if(null(x), x, y, app(y, add(head(x), nil)))if(true, x, y, z)y
if(false, x, y, z)shuff(reverse(tail(x)), z)

Original Signature

Termination of terms over the following signature is verified: app, reverse, shuffle, if, true, false, shuff, add, head, tail, null, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

reverse#(add(n, x))reverse#(x)

Problem 4: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

shuff#(x, y)if#(null(x), x, y, app(y, add(head(x), nil)))if#(false, x, y, z)shuff#(reverse(tail(x)), z)

Rewrite Rules

null(nil)truenull(add(n, x))false
tail(add(n, x))xtail(nil)nil
head(add(n, x))napp(nil, y)y
app(add(n, x), y)add(n, app(x, y))reverse(nil)nil
reverse(add(n, x))app(reverse(x), add(n, nil))shuffle(x)shuff(x, nil)
shuff(x, y)if(null(x), x, y, app(y, add(head(x), nil)))if(true, x, y, z)y
if(false, x, y, z)shuff(reverse(tail(x)), z)

Original Signature

Termination of terms over the following signature is verified: app, reverse, shuffle, if, true, false, shuff, add, head, tail, null, nil

Strategy


Instantiation

For all potential predecessors l → r of the rule shuff#(x, y) → if#(null(x), x, y, app(y, add(head(x), nil))) on dependency pair chains it holds that: Thus, shuff#(x, y) → if#(null(x), x, y, app(y, add(head(x), nil))) is replaced by instances determined through the above matching. These instances are:
shuff#(reverse(tail(_x)), _z) → if#(null(reverse(tail(_x))), reverse(tail(_x)), _z, app(_z, add(head(reverse(tail(_x))), nil)))