TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60019 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (95ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (0ms).
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (2ms), PolynomialLinearRange4iUR (249ms), DependencyGraph (2ms), PolynomialLinearRange8NegiUR (3640ms), DependencyGraph (2ms), ReductionPairSAT (timeout)].
 | – Problem 5 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 4

Dependency Pairs

if#(true, c, s(s(x)), a, b)if#(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)

Rewrite Rules

lt(0, s(x))truelt(x, 0)false
lt(s(x), s(y))lt(x, y)fibo(0)fib(0)
fibo(s(0))fib(s(0))fibo(s(s(x)))sum(fibo(s(x)), fibo(x))
fib(0)s(0)fib(s(0))s(0)
fib(s(s(x)))if(true, 0, s(s(x)), 0, 0)if(true, c, s(s(x)), a, b)if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b)sum(fibo(a), fibo(b))sum(x, 0)x
sum(x, s(y))s(sum(x, y))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, sum, false, true, fibo, lt, fib


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

if#(true, c, s(s(x)), a, b)lt#(s(c), s(s(x)))if#(false, c, s(s(x)), a, b)fibo#(b)
sum#(x, s(y))sum#(x, y)fib#(s(s(x)))if#(true, 0, s(s(x)), 0, 0)
fibo#(s(s(x)))fibo#(x)lt#(s(x), s(y))lt#(x, y)
if#(true, c, s(s(x)), a, b)if#(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)fibo#(s(s(x)))sum#(fibo(s(x)), fibo(x))
if#(false, c, s(s(x)), a, b)fibo#(a)fibo#(s(0))fib#(s(0))
fibo#(0)fib#(0)if#(false, c, s(s(x)), a, b)sum#(fibo(a), fibo(b))
fibo#(s(s(x)))fibo#(s(x))

Rewrite Rules

lt(0, s(x))truelt(x, 0)false
lt(s(x), s(y))lt(x, y)fibo(0)fib(0)
fibo(s(0))fib(s(0))fibo(s(s(x)))sum(fibo(s(x)), fibo(x))
fib(0)s(0)fib(s(0))s(0)
fib(s(s(x)))if(true, 0, s(s(x)), 0, 0)if(true, c, s(s(x)), a, b)if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b)sum(fibo(a), fibo(b))sum(x, 0)x
sum(x, s(y))s(sum(x, y))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, true, false, sum, fibo, lt, fib

Strategy


The following SCCs where found

sum#(x, s(y)) → sum#(x, y)

fibo#(s(s(x))) → fibo#(x)fibo#(s(s(x))) → fibo#(s(x))

lt#(s(x), s(y)) → lt#(x, y)

if#(true, c, s(s(x)), a, b) → if#(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

lt#(s(x), s(y))lt#(x, y)

Rewrite Rules

lt(0, s(x))truelt(x, 0)false
lt(s(x), s(y))lt(x, y)fibo(0)fib(0)
fibo(s(0))fib(s(0))fibo(s(s(x)))sum(fibo(s(x)), fibo(x))
fib(0)s(0)fib(s(0))s(0)
fib(s(s(x)))if(true, 0, s(s(x)), 0, 0)if(true, c, s(s(x)), a, b)if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b)sum(fibo(a), fibo(b))sum(x, 0)x
sum(x, s(y))s(sum(x, y))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, true, false, sum, fibo, lt, fib

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

lt#(s(x), s(y))lt#(x, y)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

sum#(x, s(y))sum#(x, y)

Rewrite Rules

lt(0, s(x))truelt(x, 0)false
lt(s(x), s(y))lt(x, y)fibo(0)fib(0)
fibo(s(0))fib(s(0))fibo(s(s(x)))sum(fibo(s(x)), fibo(x))
fib(0)s(0)fib(s(0))s(0)
fib(s(s(x)))if(true, 0, s(s(x)), 0, 0)if(true, c, s(s(x)), a, b)if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b)sum(fibo(a), fibo(b))sum(x, 0)x
sum(x, s(y))s(sum(x, y))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, true, false, sum, fibo, lt, fib

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

sum#(x, s(y))sum#(x, y)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

fibo#(s(s(x)))fibo#(x)fibo#(s(s(x)))fibo#(s(x))

Rewrite Rules

lt(0, s(x))truelt(x, 0)false
lt(s(x), s(y))lt(x, y)fibo(0)fib(0)
fibo(s(0))fib(s(0))fibo(s(s(x)))sum(fibo(s(x)), fibo(x))
fib(0)s(0)fib(s(0))s(0)
fib(s(s(x)))if(true, 0, s(s(x)), 0, 0)if(true, c, s(s(x)), a, b)if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c)
if(false, c, s(s(x)), a, b)sum(fibo(a), fibo(b))sum(x, 0)x
sum(x, s(y))s(sum(x, y))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, true, false, sum, fibo, lt, fib

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

fibo#(s(s(x)))fibo#(x)fibo#(s(s(x)))fibo#(s(x))