YES

The TRS could be proven terminating. The proof took 1817 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (93ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor PolynomialOrderingProcessor (318ms).
 |    | – Problem 7 was processed with processor DependencyGraph (2ms).
 |    |    | – Problem 8 was processed with processor PolynomialOrderingProcessor (13ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor PolynomialLinearRange4iUR (794ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

gcd#(s(x), s(y))gcd#(minus(max(x, y), min(x, transform(y))), s(min(x, y)))gcd#(s(x), s(y))min#(x, transform(y))
transform#(s(x))transform#(x)gcd#(s(x), s(y))max#(x, y)
transform#(cons(x, y))cons#(x, x)max#(s(x), s(y))max#(x, y)
cons#(cons(x, z), s(y))transform#(x)gcd#(s(x), s(y))minus#(max(x, y), min(x, transform(y)))
transform#(cons(x, y))cons#(cons(x, x), x)gcd#(s(x), s(y))transform#(y)
cons#(x, cons(y, s(z)))cons#(y, x)min#(s(x), s(y))min#(x, y)
minus#(s(x), s(y))minus#(x, y)gcd#(s(x), s(y))min#(x, y)

Rewrite Rules

min(x, 0)0min(0, y)0
min(s(x), s(y))s(min(x, y))max(x, 0)x
max(0, y)ymax(s(x), s(y))s(max(x, y))
minus(x, 0)xminus(s(x), s(y))s(minus(x, y))
gcd(s(x), s(y))gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))transform(x)s(s(x))
transform(cons(x, y))cons(cons(x, x), x)transform(cons(x, y))y
transform(s(x))s(s(transform(x)))cons(x, y)y
cons(x, cons(y, s(z)))cons(y, x)cons(cons(x, z), s(y))transform(x)

Original Signature

Termination of terms over the following signature is verified: min, transform, 0, max, minus, s, gcd, cons

Strategy


The following SCCs where found

gcd#(s(x), s(y)) → gcd#(minus(max(x, y), min(x, transform(y))), s(min(x, y)))

transform#(cons(x, y)) → cons#(cons(x, x), x)cons#(x, cons(y, s(z))) → cons#(y, x)
transform#(s(x)) → transform#(x)transform#(cons(x, y)) → cons#(x, x)
cons#(cons(x, z), s(y)) → transform#(x)

min#(s(x), s(y)) → min#(x, y)

minus#(s(x), s(y)) → minus#(x, y)

max#(s(x), s(y)) → max#(x, y)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

max#(s(x), s(y))max#(x, y)

Rewrite Rules

min(x, 0)0min(0, y)0
min(s(x), s(y))s(min(x, y))max(x, 0)x
max(0, y)ymax(s(x), s(y))s(max(x, y))
minus(x, 0)xminus(s(x), s(y))s(minus(x, y))
gcd(s(x), s(y))gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))transform(x)s(s(x))
transform(cons(x, y))cons(cons(x, x), x)transform(cons(x, y))y
transform(s(x))s(s(transform(x)))cons(x, y)y
cons(x, cons(y, s(z)))cons(y, x)cons(cons(x, z), s(y))transform(x)

Original Signature

Termination of terms over the following signature is verified: min, transform, 0, max, minus, s, gcd, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

max#(s(x), s(y))max#(x, y)

Problem 3: PolynomialOrderingProcessor



Dependency Pair Problem

Dependency Pairs

transform#(cons(x, y))cons#(cons(x, x), x)cons#(x, cons(y, s(z)))cons#(y, x)
transform#(s(x))transform#(x)transform#(cons(x, y))cons#(x, x)
cons#(cons(x, z), s(y))transform#(x)

Rewrite Rules

min(x, 0)0min(0, y)0
min(s(x), s(y))s(min(x, y))max(x, 0)x
max(0, y)ymax(s(x), s(y))s(max(x, y))
minus(x, 0)xminus(s(x), s(y))s(minus(x, y))
gcd(s(x), s(y))gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))transform(x)s(s(x))
transform(cons(x, y))cons(cons(x, x), x)transform(cons(x, y))y
transform(s(x))s(s(transform(x)))cons(x, y)y
cons(x, cons(y, s(z)))cons(y, x)cons(cons(x, z), s(y))transform(x)

Original Signature

Termination of terms over the following signature is verified: min, transform, 0, max, minus, s, gcd, cons

Strategy


Polynomial Interpretation

Improved Usable rules

cons(x, cons(y, s(z)))cons(y, x)cons(cons(x, z), s(y))transform(x)
transform(x)s(s(x))transform(cons(x, y))cons(cons(x, x), x)
transform(s(x))s(s(transform(x)))transform(cons(x, y))y
cons(x, y)y

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

transform#(cons(x, y))cons#(cons(x, x), x)cons#(x, cons(y, s(z)))cons#(y, x)
transform#(cons(x, y))cons#(x, x)

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

transform#(s(x))transform#(x)cons#(cons(x, z), s(y))transform#(x)

Rewrite Rules

min(x, 0)0min(0, y)0
min(s(x), s(y))s(min(x, y))max(x, 0)x
max(0, y)ymax(s(x), s(y))s(max(x, y))
minus(x, 0)xminus(s(x), s(y))s(minus(x, y))
gcd(s(x), s(y))gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))transform(x)s(s(x))
transform(cons(x, y))cons(cons(x, x), x)transform(cons(x, y))y
transform(s(x))s(s(transform(x)))cons(x, y)y
cons(x, cons(y, s(z)))cons(y, x)cons(cons(x, z), s(y))transform(x)

Original Signature

Termination of terms over the following signature is verified: min, transform, minus, max, 0, s, cons, gcd

Strategy


The following SCCs where found

transform#(s(x)) → transform#(x)

Problem 8: PolynomialOrderingProcessor



Dependency Pair Problem

Dependency Pairs

transform#(s(x))transform#(x)

Rewrite Rules

min(x, 0)0min(0, y)0
min(s(x), s(y))s(min(x, y))max(x, 0)x
max(0, y)ymax(s(x), s(y))s(max(x, y))
minus(x, 0)xminus(s(x), s(y))s(minus(x, y))
gcd(s(x), s(y))gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))transform(x)s(s(x))
transform(cons(x, y))cons(cons(x, x), x)transform(cons(x, y))y
transform(s(x))s(s(transform(x)))cons(x, y)y
cons(x, cons(y, s(z)))cons(y, x)cons(cons(x, z), s(y))transform(x)

Original Signature

Termination of terms over the following signature is verified: min, transform, minus, max, 0, s, cons, gcd

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

transform#(s(x))transform#(x)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

minus#(s(x), s(y))minus#(x, y)

Rewrite Rules

min(x, 0)0min(0, y)0
min(s(x), s(y))s(min(x, y))max(x, 0)x
max(0, y)ymax(s(x), s(y))s(max(x, y))
minus(x, 0)xminus(s(x), s(y))s(minus(x, y))
gcd(s(x), s(y))gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))transform(x)s(s(x))
transform(cons(x, y))cons(cons(x, x), x)transform(cons(x, y))y
transform(s(x))s(s(transform(x)))cons(x, y)y
cons(x, cons(y, s(z)))cons(y, x)cons(cons(x, z), s(y))transform(x)

Original Signature

Termination of terms over the following signature is verified: min, transform, 0, max, minus, s, gcd, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

minus#(s(x), s(y))minus#(x, y)

Problem 5: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

gcd#(s(x), s(y))gcd#(minus(max(x, y), min(x, transform(y))), s(min(x, y)))

Rewrite Rules

min(x, 0)0min(0, y)0
min(s(x), s(y))s(min(x, y))max(x, 0)x
max(0, y)ymax(s(x), s(y))s(max(x, y))
minus(x, 0)xminus(s(x), s(y))s(minus(x, y))
gcd(s(x), s(y))gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))transform(x)s(s(x))
transform(cons(x, y))cons(cons(x, x), x)transform(cons(x, y))y
transform(s(x))s(s(transform(x)))cons(x, y)y
cons(x, cons(y, s(z)))cons(y, x)cons(cons(x, z), s(y))transform(x)

Original Signature

Termination of terms over the following signature is verified: min, transform, 0, max, minus, s, gcd, cons

Strategy


Polynomial Interpretation

Improved Usable rules

min(0, y)0max(s(x), s(y))s(max(x, y))
minus(s(x), s(y))s(minus(x, y))min(s(x), s(y))s(min(x, y))
max(0, y)yminus(x, 0)x
min(x, 0)0max(x, 0)x

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

gcd#(s(x), s(y))gcd#(minus(max(x, y), min(x, transform(y))), s(min(x, y)))

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

min#(s(x), s(y))min#(x, y)

Rewrite Rules

min(x, 0)0min(0, y)0
min(s(x), s(y))s(min(x, y))max(x, 0)x
max(0, y)ymax(s(x), s(y))s(max(x, y))
minus(x, 0)xminus(s(x), s(y))s(minus(x, y))
gcd(s(x), s(y))gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))transform(x)s(s(x))
transform(cons(x, y))cons(cons(x, x), x)transform(cons(x, y))y
transform(s(x))s(s(transform(x)))cons(x, y)y
cons(x, cons(y, s(z)))cons(y, x)cons(cons(x, z), s(y))transform(x)

Original Signature

Termination of terms over the following signature is verified: min, transform, 0, max, minus, s, gcd, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

min#(s(x), s(y))min#(x, y)