TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1638ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (7ms), PolynomialLinearRange4iUR (3333ms), DependencyGraph (2ms), PolynomialLinearRange8NegiUR (10000ms), DependencyGraph (3ms), ReductionPairSAT (7246ms), DependencyGraph (44ms), ReductionPairSAT (7075ms), DependencyGraph (3ms), ReductionPairSAT (7109ms), DependencyGraph (3ms), SizeChangePrinciple (timeout)].
 | – Problem 3 was processed with processor ReductionPairSAT (210ms).
 |    | – Problem 13 was processed with processor ReductionPairSAT (69ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 12 was processed with processor ReductionPairSAT (83ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 9 was processed with processor SubtermCriterion (3ms).
 | – Problem 10 was processed with processor SubtermCriterion (0ms).
 | – Problem 11 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, top, eq, cons, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

proper#(length(X))length#(proper(X))top#(ok(X))top#(active(X))
cons#(ok(X1), ok(X2))cons#(X1, X2)active#(eq(s(X), s(Y)))eq#(X, Y)
proper#(cons(any(X1), X2))any#(proper(X2))active#(take(X1, X2))take#(active(X1), X2)
any#(proper(X))any#(any(X))active#(inf(X))active#(X)
active#(take(s(X), cons(Y, L)))take#(X, L)length#(ok(X))length#(X)
top#(mark(X))proper#(X)proper#(cons(any(X1), X2))any#(proper(X1))
any#(proper(X))any#(any(any(X)))length#(mark(X))length#(X)
top#(mark(X))top#(proper(X))active#(take(X1, X2))active#(X2)
any#(X)s#(X)active#(length(X))active#(X)
active#(length(cons(X, L)))length#(L)take#(X1, mark(X2))take#(X1, X2)
active#(take(s(X), cons(Y, L)))cons#(Y, take(X, L))proper#(s(X))proper#(X)
proper#(cons(any(X1), X2))proper#(X1)proper#(eq(X1, X2))proper#(X1)
proper#(take(X1, X2))take#(proper(X1), proper(X2))active#(inf(X))cons#(X, inf(s(X)))
proper#(inf(X))inf#(proper(X))proper#(cons(any(X1), X2))any#(any(proper(X1)))
take#(mark(X1), X2)take#(X1, X2)proper#(inf(X))proper#(X)
top#(ok(X))active#(X)active#(inf(X))s#(X)
inf#(ok(X))inf#(X)proper#(take(X1, X2))proper#(X1)
proper#(cons(any(X1), X2))cons#(any(any(proper(X1))), any(proper(X2)))take#(ok(X1), ok(X2))take#(X1, X2)
active#(length(X))length#(active(X))active#(inf(X))inf#(s(X))
active#(length(cons(X, L)))s#(length(L))active#(take(X1, X2))active#(X1)
proper#(take(X1, X2))proper#(X2)proper#(eq(X1, X2))eq#(proper(X1), proper(X2))
proper#(eq(X1, X2))proper#(X2)s#(ok(X))s#(X)
proper#(length(X))proper#(X)active#(inf(X))inf#(active(X))
active#(take(X1, X2))take#(X1, active(X2))proper#(cons(any(X1), X2))proper#(X2)
any#(proper(X))any#(X)proper#(s(X))s#(proper(X))
eq#(ok(X1), ok(X2))eq#(X1, X2)inf#(mark(X))inf#(X)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, nil, cons, eq, top

Strategy


The following SCCs where found

length#(mark(X)) → length#(X)length#(ok(X)) → length#(X)

proper#(s(X)) → proper#(X)proper#(length(X)) → proper#(X)
proper#(take(X1, X2)) → proper#(X1)proper#(cons(any(X1), X2)) → proper#(X1)
proper#(cons(any(X1), X2)) → proper#(X2)proper#(eq(X1, X2)) → proper#(X1)
proper#(take(X1, X2)) → proper#(X2)proper#(inf(X)) → proper#(X)
proper#(eq(X1, X2)) → proper#(X2)

inf#(ok(X)) → inf#(X)inf#(mark(X)) → inf#(X)

any#(proper(X)) → any#(any(any(X)))any#(proper(X)) → any#(any(X))
any#(proper(X)) → any#(X)

cons#(ok(X1), ok(X2)) → cons#(X1, X2)

eq#(ok(X1), ok(X2)) → eq#(X1, X2)

take#(mark(X1), X2) → take#(X1, X2)take#(X1, mark(X2)) → take#(X1, X2)
take#(ok(X1), ok(X2)) → take#(X1, X2)

s#(ok(X)) → s#(X)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

active#(inf(X)) → active#(X)active#(take(X1, X2)) → active#(X2)
active#(take(X1, X2)) → active#(X1)active#(length(X)) → active#(X)

Problem 3: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

any#(proper(X))any#(any(any(X)))any#(proper(X))any#(any(X))
any#(proper(X))any#(X)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, nil, cons, eq, top

Strategy


Function Precedence

any# < s < any < proper < inf = true = mark = 0 = take = length = active = false = ok = top = cons = nil = eq

Argument Filtering

inf: collapses to 1
true: all arguments are removed from true
mark: 1
0: all arguments are removed from 0
s: collapses to 1
take: 1 2
any: collapses to 1
length: all arguments are removed from length
active: all arguments are removed from active
false: all arguments are removed from false
ok: all arguments are removed from ok
proper: 1
any#: collapses to 1
top: all arguments are removed from top
cons: all arguments are removed from cons
nil: all arguments are removed from nil
eq: 1 2

Status

true: multiset
mark: lexicographic with permutation 1 → 1
0: multiset
take: lexicographic with permutation 1 → 1 2 → 2
length: multiset
active: multiset
false: multiset
ok: multiset
proper: multiset
top: multiset
cons: multiset
nil: multiset
eq: lexicographic with permutation 1 → 1 2 → 2

Usable Rules

any(X) → s(X)any(proper(X)) → any(any(any(X)))
s(ok(X)) → ok(s(X))

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

any#(proper(X)) → any#(any(any(X)))any#(proper(X)) → any#(any(X))

Problem 13: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

any#(proper(X))any#(X)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, top, eq, cons, nil

Strategy


Function Precedence

inf = true = mark = 0 = s = take = any = length = active = false = ok = proper = any# = top = cons = nil = eq

Argument Filtering

inf: all arguments are removed from inf
true: all arguments are removed from true
mark: all arguments are removed from mark
0: all arguments are removed from 0
s: all arguments are removed from s
take: all arguments are removed from take
any: 1
length: all arguments are removed from length
active: all arguments are removed from active
false: all arguments are removed from false
ok: all arguments are removed from ok
proper: 1
any#: 1
top: all arguments are removed from top
cons: 1 2
nil: all arguments are removed from nil
eq: all arguments are removed from eq

Status

inf: multiset
true: multiset
mark: multiset
0: multiset
s: multiset
take: multiset
any: lexicographic with permutation 1 → 1
length: multiset
active: multiset
false: multiset
ok: multiset
proper: multiset
any#: lexicographic with permutation 1 → 1
top: multiset
cons: lexicographic with permutation 1 → 1 2 → 2
nil: multiset
eq: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

any#(proper(X)) → any#(X)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(inf(X))active#(X)active#(take(X1, X2))active#(X2)
active#(take(X1, X2))active#(X1)active#(length(X))active#(X)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, nil, cons, eq, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(inf(X))active#(X)active#(take(X1, X2))active#(X2)
active#(length(X))active#(X)active#(take(X1, X2))active#(X1)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

length#(mark(X))length#(X)length#(ok(X))length#(X)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, nil, cons, eq, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

length#(mark(X))length#(X)length#(ok(X))length#(X)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

eq#(ok(X1), ok(X2))eq#(X1, X2)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, nil, cons, eq, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

eq#(ok(X1), ok(X2))eq#(X1, X2)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

take#(mark(X1), X2)take#(X1, X2)take#(X1, mark(X2))take#(X1, X2)
take#(ok(X1), ok(X2))take#(X1, X2)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, nil, cons, eq, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

take#(mark(X1), X2)take#(X1, X2)take#(ok(X1), ok(X2))take#(X1, X2)

Problem 12: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

take#(X1, mark(X2))take#(X1, X2)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, top, eq, cons, nil

Strategy


Function Precedence

inf = true = mark = take# = 0 = s = take = any = length = active = false = ok = proper = top = cons = nil = eq

Argument Filtering

inf: collapses to 1
true: all arguments are removed from true
mark: 1
take#: collapses to 2
0: all arguments are removed from 0
s: collapses to 1
take: all arguments are removed from take
any: collapses to 1
length: all arguments are removed from length
active: collapses to 1
false: all arguments are removed from false
ok: all arguments are removed from ok
proper: collapses to 1
top: all arguments are removed from top
cons: collapses to 1
nil: all arguments are removed from nil
eq: 1 2

Status

true: multiset
mark: lexicographic with permutation 1 → 1
0: multiset
take: multiset
length: multiset
false: multiset
ok: multiset
top: multiset
nil: multiset
eq: lexicographic with permutation 1 → 2 2 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

take#(X1, mark(X2)) → take#(X1, X2)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

inf#(ok(X))inf#(X)inf#(mark(X))inf#(X)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, nil, cons, eq, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

inf#(ok(X))inf#(X)inf#(mark(X))inf#(X)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(ok(X1), ok(X2))cons#(X1, X2)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, nil, cons, eq, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(ok(X1), ok(X2))cons#(X1, X2)

Problem 10: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(ok(X))s#(X)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, nil, cons, eq, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(ok(X))s#(X)

Problem 11: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(s(X))proper#(X)proper#(length(X))proper#(X)
proper#(take(X1, X2))proper#(X1)proper#(cons(any(X1), X2))proper#(X1)
proper#(cons(any(X1), X2))proper#(X2)proper#(eq(X1, X2))proper#(X1)
proper#(take(X1, X2))proper#(X2)proper#(inf(X))proper#(X)
proper#(eq(X1, X2))proper#(X2)

Rewrite Rules

active(eq(0, 0))mark(true)active(eq(s(X), s(Y)))mark(eq(X, Y))
active(eq(X, Y))mark(false)active(inf(X))mark(cons(X, inf(s(X))))
active(take(0, X))mark(nil)active(take(s(X), cons(Y, L)))mark(cons(Y, take(X, L)))
active(length(nil))mark(0)active(length(cons(X, L)))mark(s(length(L)))
active(inf(X))inf(active(X))active(take(X1, X2))take(active(X1), X2)
active(take(X1, X2))take(X1, active(X2))active(length(X))length(active(X))
inf(mark(X))mark(inf(X))take(mark(X1), X2)mark(take(X1, X2))
take(X1, mark(X2))mark(take(X1, X2))length(mark(X))mark(length(X))
proper(eq(X1, X2))eq(proper(X1), proper(X2))proper(0)ok(0)
proper(true)ok(true)proper(s(X))s(proper(X))
proper(false)ok(false)proper(inf(X))inf(proper(X))
proper(cons(any(X1), X2))cons(any(any(proper(X1))), any(proper(X2)))proper(take(X1, X2))take(proper(X1), proper(X2))
proper(nil)ok(nil)proper(length(X))length(proper(X))
eq(ok(X1), ok(X2))ok(eq(X1, X2))s(ok(X))ok(s(X))
inf(ok(X))ok(inf(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
take(ok(X1), ok(X2))ok(take(X1, X2))length(ok(X))ok(length(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))
any(X)s(X)any(proper(X))any(any(any(X)))

Original Signature

Termination of terms over the following signature is verified: inf, true, mark, 0, s, take, any, length, active, false, ok, proper, nil, cons, eq, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(length(X))proper#(X)proper#(s(X))proper#(X)
proper#(cons(any(X1), X2))proper#(X2)proper#(take(X1, X2))proper#(X1)
proper#(cons(any(X1), X2))proper#(X1)proper#(eq(X1, X2))proper#(X1)
proper#(take(X1, X2))proper#(X2)proper#(inf(X))proper#(X)
proper#(eq(X1, X2))proper#(X2)