YES
The TRS could be proven terminating. The proof took 29 ms.
Problem 1 was processed with processor DependencyGraph (19ms).
g#(false, x, y, z) | → | p#(y) | g#(false, x, y, z) | → | p#(x) | |
g#(false, x, y, z) | → | f#(p(z), x, y) | g#(false, x, y, z) | → | f#(p(y), z, x) | |
g#(false, x, y, z) | → | f#(f(p(x), y, z), f(p(y), z, x), f(p(z), x, y)) | g#(false, x, y, z) | → | p#(z) | |
f#(x, y, z) | → | g#(<=(x, y), x, y, z) | g#(false, x, y, z) | → | f#(p(x), y, z) |
f(x, y, z) | → | g(<=(x, y), x, y, z) | g(true, x, y, z) | → | z | |
g(false, x, y, z) | → | f(f(p(x), y, z), f(p(y), z, x), f(p(z), x, y)) | p(0) | → | 0 | |
p(s(x)) | → | x |
Termination of terms over the following signature is verified: f, g, 0, s, <=, p, true, false