YES

The TRS could be proven terminating. The proof took 29 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (19ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

g#(false, x, y, z)p#(y)g#(false, x, y, z)p#(x)
g#(false, x, y, z)f#(p(z), x, y)g#(false, x, y, z)f#(p(y), z, x)
g#(false, x, y, z)f#(f(p(x), y, z), f(p(y), z, x), f(p(z), x, y))g#(false, x, y, z)p#(z)
f#(x, y, z)g#(<=(x, y), x, y, z)g#(false, x, y, z)f#(p(x), y, z)

Rewrite Rules

f(x, y, z)g(<=(x, y), x, y, z)g(true, x, y, z)z
g(false, x, y, z)f(f(p(x), y, z), f(p(y), z, x), f(p(z), x, y))p(0)0
p(s(x))x

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, <=, p, true, false

Strategy


There are no SCCs!