YES

The TRS could be proven terminating. The proof took 1351 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (83ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (1019ms).
 |    | – Problem 3 was processed with processor DependencyGraph (7ms).
 |    |    | – Problem 4 was processed with processor PolynomialLinearRange4iUR (47ms).
 |    |    |    | – Problem 5 was processed with processor PolynomialLinearRange4iUR (30ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

u31#(dout(DX), X, Y)din#(der(Y))din#(der(times(X, Y)))din#(der(X))
u41#(dout(DX), X)din#(der(DX))din#(der(der(X)))u41#(din(der(X)), X)
din#(der(plus(X, Y)))u21#(din(der(X)), X, Y)u21#(dout(DX), X, Y)din#(der(Y))
u21#(dout(DX), X, Y)u22#(din(der(Y)), X, Y, DX)u31#(dout(DX), X, Y)u32#(din(der(Y)), X, Y, DX)
u41#(dout(DX), X)u42#(din(der(DX)), X, DX)din#(der(plus(X, Y)))din#(der(X))
din#(der(times(X, Y)))u31#(din(der(X)), X, Y)din#(der(der(X)))din#(der(X))

Rewrite Rules

din(der(plus(X, Y)))u21(din(der(X)), X, Y)u21(dout(DX), X, Y)u22(din(der(Y)), X, Y, DX)
u22(dout(DY), X, Y, DX)dout(plus(DX, DY))din(der(times(X, Y)))u31(din(der(X)), X, Y)
u31(dout(DX), X, Y)u32(din(der(Y)), X, Y, DX)u32(dout(DY), X, Y, DX)dout(plus(times(X, DY), times(Y, DX)))
din(der(der(X)))u41(din(der(X)), X)u41(dout(DX), X)u42(din(der(DX)), X, DX)
u42(dout(DDX), X, DX)dout(DDX)

Original Signature

Termination of terms over the following signature is verified: din, plus, der, u22, u21, times, u41, u42, u31, u32, dout

Strategy


The following SCCs where found

u31#(dout(DX), X, Y) → din#(der(Y))din#(der(times(X, Y))) → din#(der(X))
u41#(dout(DX), X) → din#(der(DX))din#(der(der(X))) → u41#(din(der(X)), X)
din#(der(plus(X, Y))) → u21#(din(der(X)), X, Y)u21#(dout(DX), X, Y) → din#(der(Y))
din#(der(times(X, Y))) → u31#(din(der(X)), X, Y)din#(der(plus(X, Y))) → din#(der(X))
din#(der(der(X))) → din#(der(X))

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

u31#(dout(DX), X, Y)din#(der(Y))din#(der(times(X, Y)))din#(der(X))
u41#(dout(DX), X)din#(der(DX))din#(der(der(X)))u41#(din(der(X)), X)
din#(der(plus(X, Y)))u21#(din(der(X)), X, Y)u21#(dout(DX), X, Y)din#(der(Y))
din#(der(times(X, Y)))u31#(din(der(X)), X, Y)din#(der(plus(X, Y)))din#(der(X))
din#(der(der(X)))din#(der(X))

Rewrite Rules

din(der(plus(X, Y)))u21(din(der(X)), X, Y)u21(dout(DX), X, Y)u22(din(der(Y)), X, Y, DX)
u22(dout(DY), X, Y, DX)dout(plus(DX, DY))din(der(times(X, Y)))u31(din(der(X)), X, Y)
u31(dout(DX), X, Y)u32(din(der(Y)), X, Y, DX)u32(dout(DY), X, Y, DX)dout(plus(times(X, DY), times(Y, DX)))
din(der(der(X)))u41(din(der(X)), X)u41(dout(DX), X)u42(din(der(DX)), X, DX)
u42(dout(DDX), X, DX)dout(DDX)

Original Signature

Termination of terms over the following signature is verified: din, plus, der, u22, u21, times, u41, u42, u31, u32, dout

Strategy


Polynomial Interpretation

Improved Usable rules

u21(dout(DX), X, Y)u22(din(der(Y)), X, Y, DX)u41(dout(DX), X)u42(din(der(DX)), X, DX)
u32(dout(DY), X, Y, DX)dout(plus(times(X, DY), times(Y, DX)))u31(dout(DX), X, Y)u32(din(der(Y)), X, Y, DX)
din(der(plus(X, Y)))u21(din(der(X)), X, Y)din(der(der(X)))u41(din(der(X)), X)
u22(dout(DY), X, Y, DX)dout(plus(DX, DY))din(der(times(X, Y)))u31(din(der(X)), X, Y)
u42(dout(DDX), X, DX)dout(DDX)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

u31#(dout(DX), X, Y)din#(der(Y))din#(der(der(X)))u41#(din(der(X)), X)
din#(der(plus(X, Y)))u21#(din(der(X)), X, Y)

Problem 3: DependencyGraph



Dependency Pair Problem

Dependency Pairs

u41#(dout(DX), X)din#(der(DX))din#(der(times(X, Y)))din#(der(X))
u21#(dout(DX), X, Y)din#(der(Y))din#(der(plus(X, Y)))din#(der(X))
din#(der(times(X, Y)))u31#(din(der(X)), X, Y)din#(der(der(X)))din#(der(X))

Rewrite Rules

din(der(plus(X, Y)))u21(din(der(X)), X, Y)u21(dout(DX), X, Y)u22(din(der(Y)), X, Y, DX)
u22(dout(DY), X, Y, DX)dout(plus(DX, DY))din(der(times(X, Y)))u31(din(der(X)), X, Y)
u31(dout(DX), X, Y)u32(din(der(Y)), X, Y, DX)u32(dout(DY), X, Y, DX)dout(plus(times(X, DY), times(Y, DX)))
din(der(der(X)))u41(din(der(X)), X)u41(dout(DX), X)u42(din(der(DX)), X, DX)
u42(dout(DDX), X, DX)dout(DDX)

Original Signature

Termination of terms over the following signature is verified: der, plus, din, u22, u21, times, u41, u42, u31, u32, dout

Strategy


The following SCCs where found

din#(der(times(X, Y))) → din#(der(X))din#(der(plus(X, Y))) → din#(der(X))
din#(der(der(X))) → din#(der(X))

Problem 4: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

din#(der(times(X, Y)))din#(der(X))din#(der(plus(X, Y)))din#(der(X))
din#(der(der(X)))din#(der(X))

Rewrite Rules

din(der(plus(X, Y)))u21(din(der(X)), X, Y)u21(dout(DX), X, Y)u22(din(der(Y)), X, Y, DX)
u22(dout(DY), X, Y, DX)dout(plus(DX, DY))din(der(times(X, Y)))u31(din(der(X)), X, Y)
u31(dout(DX), X, Y)u32(din(der(Y)), X, Y, DX)u32(dout(DY), X, Y, DX)dout(plus(times(X, DY), times(Y, DX)))
din(der(der(X)))u41(din(der(X)), X)u41(dout(DX), X)u42(din(der(DX)), X, DX)
u42(dout(DDX), X, DX)dout(DDX)

Original Signature

Termination of terms over the following signature is verified: der, plus, din, u22, u21, times, u41, u42, u31, u32, dout

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

din#(der(plus(X, Y)))din#(der(X))din#(der(der(X)))din#(der(X))

Problem 5: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

din#(der(times(X, Y)))din#(der(X))

Rewrite Rules

din(der(plus(X, Y)))u21(din(der(X)), X, Y)u21(dout(DX), X, Y)u22(din(der(Y)), X, Y, DX)
u22(dout(DY), X, Y, DX)dout(plus(DX, DY))din(der(times(X, Y)))u31(din(der(X)), X, Y)
u31(dout(DX), X, Y)u32(din(der(Y)), X, Y, DX)u32(dout(DY), X, Y, DX)dout(plus(times(X, DY), times(Y, DX)))
din(der(der(X)))u41(din(der(X)), X)u41(dout(DX), X)u42(din(der(DX)), X, DX)
u42(dout(DDX), X, DX)dout(DDX)

Original Signature

Termination of terms over the following signature is verified: din, plus, der, u22, u21, times, u41, u42, u31, u32, dout

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

din#(der(times(X, Y)))din#(der(X))