YES

The TRS could be proven terminating. The proof took 710 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (134ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (351ms).
 | – Problem 3 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 7 was processed with processor DependencyGraph (12ms).
 | – Problem 4 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 8 was processed with processor DependencyGraph (25ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

high#(N, cons(M, L))ifhigh#(le(M, N), N, cons(M, L))quicksort#(cons(N, L))quicksort#(high(N, L))
quicksort#(cons(N, L))low#(N, L)le#(s(X), s(Y))le#(X, Y)
quicksort#(cons(N, L))app#(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))ifhigh#(true, N, cons(M, L))high#(N, L)
quicksort#(cons(N, L))quicksort#(low(N, L))low#(N, cons(M, L))le#(M, N)
iflow#(false, N, cons(M, L))low#(N, L)low#(N, cons(M, L))iflow#(le(M, N), N, cons(M, L))
iflow#(true, N, cons(M, L))low#(N, L)quicksort#(cons(N, L))high#(N, L)
app#(cons(N, L), Y)app#(L, Y)ifhigh#(false, N, cons(M, L))high#(N, L)
high#(N, cons(M, L))le#(M, N)

Rewrite Rules

le(0, Y)truele(s(X), 0)false
le(s(X), s(Y))le(X, Y)app(nil, Y)Y
app(cons(N, L), Y)cons(N, app(L, Y))low(N, nil)nil
low(N, cons(M, L))iflow(le(M, N), N, cons(M, L))iflow(true, N, cons(M, L))cons(M, low(N, L))
iflow(false, N, cons(M, L))low(N, L)high(N, nil)nil
high(N, cons(M, L))ifhigh(le(M, N), N, cons(M, L))ifhigh(true, N, cons(M, L))high(N, L)
ifhigh(false, N, cons(M, L))cons(M, high(N, L))quicksort(nil)nil
quicksort(cons(N, L))app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Original Signature

Termination of terms over the following signature is verified: app, ifhigh, iflow, true, 0, le, s, false, high, low, quicksort, nil, cons

Strategy


The following SCCs where found

ifhigh#(true, N, cons(M, L)) → high#(N, L)high#(N, cons(M, L)) → ifhigh#(le(M, N), N, cons(M, L))
ifhigh#(false, N, cons(M, L)) → high#(N, L)

iflow#(false, N, cons(M, L)) → low#(N, L)iflow#(true, N, cons(M, L)) → low#(N, L)
low#(N, cons(M, L)) → iflow#(le(M, N), N, cons(M, L))

quicksort#(cons(N, L)) → quicksort#(low(N, L))quicksort#(cons(N, L)) → quicksort#(high(N, L))

app#(cons(N, L), Y) → app#(L, Y)

le#(s(X), s(Y)) → le#(X, Y)

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

quicksort#(cons(N, L))quicksort#(low(N, L))quicksort#(cons(N, L))quicksort#(high(N, L))

Rewrite Rules

le(0, Y)truele(s(X), 0)false
le(s(X), s(Y))le(X, Y)app(nil, Y)Y
app(cons(N, L), Y)cons(N, app(L, Y))low(N, nil)nil
low(N, cons(M, L))iflow(le(M, N), N, cons(M, L))iflow(true, N, cons(M, L))cons(M, low(N, L))
iflow(false, N, cons(M, L))low(N, L)high(N, nil)nil
high(N, cons(M, L))ifhigh(le(M, N), N, cons(M, L))ifhigh(true, N, cons(M, L))high(N, L)
ifhigh(false, N, cons(M, L))cons(M, high(N, L))quicksort(nil)nil
quicksort(cons(N, L))app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Original Signature

Termination of terms over the following signature is verified: app, ifhigh, iflow, true, 0, le, s, false, high, low, quicksort, nil, cons

Strategy


Polynomial Interpretation

Improved Usable rules

ifhigh(true, N, cons(M, L))high(N, L)iflow(false, N, cons(M, L))low(N, L)
high(N, nil)nilhigh(N, cons(M, L))ifhigh(le(M, N), N, cons(M, L))
low(N, nil)nilifhigh(false, N, cons(M, L))cons(M, high(N, L))
iflow(true, N, cons(M, L))cons(M, low(N, L))low(N, cons(M, L))iflow(le(M, N), N, cons(M, L))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

quicksort#(cons(N, L))quicksort#(low(N, L))quicksort#(cons(N, L))quicksort#(high(N, L))

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

ifhigh#(true, N, cons(M, L))high#(N, L)high#(N, cons(M, L))ifhigh#(le(M, N), N, cons(M, L))
ifhigh#(false, N, cons(M, L))high#(N, L)

Rewrite Rules

le(0, Y)truele(s(X), 0)false
le(s(X), s(Y))le(X, Y)app(nil, Y)Y
app(cons(N, L), Y)cons(N, app(L, Y))low(N, nil)nil
low(N, cons(M, L))iflow(le(M, N), N, cons(M, L))iflow(true, N, cons(M, L))cons(M, low(N, L))
iflow(false, N, cons(M, L))low(N, L)high(N, nil)nil
high(N, cons(M, L))ifhigh(le(M, N), N, cons(M, L))ifhigh(true, N, cons(M, L))high(N, L)
ifhigh(false, N, cons(M, L))cons(M, high(N, L))quicksort(nil)nil
quicksort(cons(N, L))app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Original Signature

Termination of terms over the following signature is verified: app, ifhigh, iflow, true, 0, le, s, false, high, low, quicksort, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

ifhigh#(true, N, cons(M, L))high#(N, L)ifhigh#(false, N, cons(M, L))high#(N, L)

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

high#(N, cons(M, L))ifhigh#(le(M, N), N, cons(M, L))

Rewrite Rules

le(0, Y)truele(s(X), 0)false
le(s(X), s(Y))le(X, Y)app(nil, Y)Y
app(cons(N, L), Y)cons(N, app(L, Y))low(N, nil)nil
low(N, cons(M, L))iflow(le(M, N), N, cons(M, L))iflow(true, N, cons(M, L))cons(M, low(N, L))
iflow(false, N, cons(M, L))low(N, L)high(N, nil)nil
high(N, cons(M, L))ifhigh(le(M, N), N, cons(M, L))ifhigh(true, N, cons(M, L))high(N, L)
ifhigh(false, N, cons(M, L))cons(M, high(N, L))quicksort(nil)nil
quicksort(cons(N, L))app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Original Signature

Termination of terms over the following signature is verified: app, ifhigh, iflow, true, 0, le, s, false, high, low, quicksort, nil, cons

Strategy


There are no SCCs!

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

iflow#(false, N, cons(M, L))low#(N, L)iflow#(true, N, cons(M, L))low#(N, L)
low#(N, cons(M, L))iflow#(le(M, N), N, cons(M, L))

Rewrite Rules

le(0, Y)truele(s(X), 0)false
le(s(X), s(Y))le(X, Y)app(nil, Y)Y
app(cons(N, L), Y)cons(N, app(L, Y))low(N, nil)nil
low(N, cons(M, L))iflow(le(M, N), N, cons(M, L))iflow(true, N, cons(M, L))cons(M, low(N, L))
iflow(false, N, cons(M, L))low(N, L)high(N, nil)nil
high(N, cons(M, L))ifhigh(le(M, N), N, cons(M, L))ifhigh(true, N, cons(M, L))high(N, L)
ifhigh(false, N, cons(M, L))cons(M, high(N, L))quicksort(nil)nil
quicksort(cons(N, L))app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Original Signature

Termination of terms over the following signature is verified: app, ifhigh, iflow, true, 0, le, s, false, high, low, quicksort, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

iflow#(false, N, cons(M, L))low#(N, L)iflow#(true, N, cons(M, L))low#(N, L)

Problem 8: DependencyGraph



Dependency Pair Problem

Dependency Pairs

low#(N, cons(M, L))iflow#(le(M, N), N, cons(M, L))

Rewrite Rules

le(0, Y)truele(s(X), 0)false
le(s(X), s(Y))le(X, Y)app(nil, Y)Y
app(cons(N, L), Y)cons(N, app(L, Y))low(N, nil)nil
low(N, cons(M, L))iflow(le(M, N), N, cons(M, L))iflow(true, N, cons(M, L))cons(M, low(N, L))
iflow(false, N, cons(M, L))low(N, L)high(N, nil)nil
high(N, cons(M, L))ifhigh(le(M, N), N, cons(M, L))ifhigh(true, N, cons(M, L))high(N, L)
ifhigh(false, N, cons(M, L))cons(M, high(N, L))quicksort(nil)nil
quicksort(cons(N, L))app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Original Signature

Termination of terms over the following signature is verified: app, ifhigh, iflow, true, 0, le, s, false, high, low, quicksort, nil, cons

Strategy


There are no SCCs!

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

app#(cons(N, L), Y)app#(L, Y)

Rewrite Rules

le(0, Y)truele(s(X), 0)false
le(s(X), s(Y))le(X, Y)app(nil, Y)Y
app(cons(N, L), Y)cons(N, app(L, Y))low(N, nil)nil
low(N, cons(M, L))iflow(le(M, N), N, cons(M, L))iflow(true, N, cons(M, L))cons(M, low(N, L))
iflow(false, N, cons(M, L))low(N, L)high(N, nil)nil
high(N, cons(M, L))ifhigh(le(M, N), N, cons(M, L))ifhigh(true, N, cons(M, L))high(N, L)
ifhigh(false, N, cons(M, L))cons(M, high(N, L))quicksort(nil)nil
quicksort(cons(N, L))app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Original Signature

Termination of terms over the following signature is verified: app, ifhigh, iflow, true, 0, le, s, false, high, low, quicksort, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

app#(cons(N, L), Y)app#(L, Y)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

le#(s(X), s(Y))le#(X, Y)

Rewrite Rules

le(0, Y)truele(s(X), 0)false
le(s(X), s(Y))le(X, Y)app(nil, Y)Y
app(cons(N, L), Y)cons(N, app(L, Y))low(N, nil)nil
low(N, cons(M, L))iflow(le(M, N), N, cons(M, L))iflow(true, N, cons(M, L))cons(M, low(N, L))
iflow(false, N, cons(M, L))low(N, L)high(N, nil)nil
high(N, cons(M, L))ifhigh(le(M, N), N, cons(M, L))ifhigh(true, N, cons(M, L))high(N, L)
ifhigh(false, N, cons(M, L))cons(M, high(N, L))quicksort(nil)nil
quicksort(cons(N, L))app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Original Signature

Termination of terms over the following signature is verified: app, ifhigh, iflow, true, 0, le, s, false, high, low, quicksort, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

le#(s(X), s(Y))le#(X, Y)