YES
The TRS could be proven terminating. The proof took 258 ms.
Problem 1 was processed with processor SubtermCriterion (5ms).
dx#(plus(ALPHA, BETA)) | → | dx#(BETA) | dx#(exp(ALPHA, BETA)) | → | dx#(ALPHA) | |
dx#(minus(ALPHA, BETA)) | → | dx#(BETA) | dx#(exp(ALPHA, BETA)) | → | dx#(BETA) | |
dx#(plus(ALPHA, BETA)) | → | dx#(ALPHA) | dx#(times(ALPHA, BETA)) | → | dx#(BETA) | |
dx#(minus(ALPHA, BETA)) | → | dx#(ALPHA) | dx#(times(ALPHA, BETA)) | → | dx#(ALPHA) | |
dx#(div(ALPHA, BETA)) | → | dx#(ALPHA) | dx#(ln(ALPHA)) | → | dx#(ALPHA) | |
dx#(neg(ALPHA)) | → | dx#(ALPHA) | dx#(div(ALPHA, BETA)) | → | dx#(BETA) |
dx(X) | → | one | dx(a) | → | zero | |
dx(plus(ALPHA, BETA)) | → | plus(dx(ALPHA), dx(BETA)) | dx(times(ALPHA, BETA)) | → | plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA))) | |
dx(minus(ALPHA, BETA)) | → | minus(dx(ALPHA), dx(BETA)) | dx(neg(ALPHA)) | → | neg(dx(ALPHA)) | |
dx(div(ALPHA, BETA)) | → | minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two)))) | dx(ln(ALPHA)) | → | div(dx(ALPHA), ALPHA) | |
dx(exp(ALPHA, BETA)) | → | plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA)))) |
Termination of terms over the following signature is verified: plus, neg, two, exp, ln, minus, dx, times, one, a, div, zero
The following projection was used:
Thus, the following dependency pairs are removed:
dx#(exp(ALPHA, BETA)) | → | dx#(ALPHA) | dx#(plus(ALPHA, BETA)) | → | dx#(BETA) | |
dx#(exp(ALPHA, BETA)) | → | dx#(BETA) | dx#(minus(ALPHA, BETA)) | → | dx#(BETA) | |
dx#(times(ALPHA, BETA)) | → | dx#(BETA) | dx#(plus(ALPHA, BETA)) | → | dx#(ALPHA) | |
dx#(minus(ALPHA, BETA)) | → | dx#(ALPHA) | dx#(times(ALPHA, BETA)) | → | dx#(ALPHA) | |
dx#(ln(ALPHA)) | → | dx#(ALPHA) | dx#(div(ALPHA, BETA)) | → | dx#(ALPHA) | |
dx#(neg(ALPHA)) | → | dx#(ALPHA) | dx#(div(ALPHA, BETA)) | → | dx#(BETA) |