YES

The TRS could be proven terminating. The proof took 258 ms.

The following DP Processors were used


Problem 1 was processed with processor SubtermCriterion (5ms).

Problem 1: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

dx#(plus(ALPHA, BETA))dx#(BETA)dx#(exp(ALPHA, BETA))dx#(ALPHA)
dx#(minus(ALPHA, BETA))dx#(BETA)dx#(exp(ALPHA, BETA))dx#(BETA)
dx#(plus(ALPHA, BETA))dx#(ALPHA)dx#(times(ALPHA, BETA))dx#(BETA)
dx#(minus(ALPHA, BETA))dx#(ALPHA)dx#(times(ALPHA, BETA))dx#(ALPHA)
dx#(div(ALPHA, BETA))dx#(ALPHA)dx#(ln(ALPHA))dx#(ALPHA)
dx#(neg(ALPHA))dx#(ALPHA)dx#(div(ALPHA, BETA))dx#(BETA)

Rewrite Rules

dx(X)onedx(a)zero
dx(plus(ALPHA, BETA))plus(dx(ALPHA), dx(BETA))dx(times(ALPHA, BETA))plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA))minus(dx(ALPHA), dx(BETA))dx(neg(ALPHA))neg(dx(ALPHA))
dx(div(ALPHA, BETA))minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))dx(ln(ALPHA))div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA))plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Original Signature

Termination of terms over the following signature is verified: plus, neg, two, exp, ln, minus, dx, times, one, a, div, zero

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

dx#(exp(ALPHA, BETA))dx#(ALPHA)dx#(plus(ALPHA, BETA))dx#(BETA)
dx#(exp(ALPHA, BETA))dx#(BETA)dx#(minus(ALPHA, BETA))dx#(BETA)
dx#(times(ALPHA, BETA))dx#(BETA)dx#(plus(ALPHA, BETA))dx#(ALPHA)
dx#(minus(ALPHA, BETA))dx#(ALPHA)dx#(times(ALPHA, BETA))dx#(ALPHA)
dx#(ln(ALPHA))dx#(ALPHA)dx#(div(ALPHA, BETA))dx#(ALPHA)
dx#(neg(ALPHA))dx#(ALPHA)dx#(div(ALPHA, BETA))dx#(BETA)