YES

The TRS could be proven terminating. The proof took 2100 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (232ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (1676ms).
 |    | – Problem 4 was processed with processor PolynomialLinearRange4iUR (20ms).
 | – Problem 3 was processed with processor SubtermCriterion (26ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

eq#(apply(T, S), apply(Tp, Sp))eq#(T, Tp)eq#(lambda(X, T), lambda(Xp, Tp))and#(eq(T, Tp), eq(X, Xp))
ren#(var(L), var(K), var(Lp))if#(eq(L, Lp), var(K), var(Lp))eq#(var(L), var(Lp))eq#(L, Lp)
eq#(cons(T, L), cons(Tp, Lp))eq#(T, Tp)eq#(apply(T, S), apply(Tp, Sp))and#(eq(T, Tp), eq(S, Sp))
eq#(cons(T, L), cons(Tp, Lp))and#(eq(T, Tp), eq(L, Lp))eq#(lambda(X, T), lambda(Xp, Tp))eq#(T, Tp)
eq#(cons(T, L), cons(Tp, Lp))eq#(L, Lp)eq#(lambda(X, T), lambda(Xp, Tp))eq#(X, Xp)
ren#(X, Y, lambda(Z, T))ren#(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)ren#(var(L), var(K), var(Lp))eq#(L, Lp)
ren#(X, Y, apply(T, S))ren#(X, Y, T)ren#(X, Y, apply(T, S))ren#(X, Y, S)
eq#(apply(T, S), apply(Tp, Sp))eq#(S, Sp)ren#(X, Y, lambda(Z, T))ren#(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))

Rewrite Rules

and(false, false)falseand(true, false)false
and(false, true)falseand(true, true)true
eq(nil, nil)trueeq(cons(T, L), nil)false
eq(nil, cons(T, L))falseeq(cons(T, L), cons(Tp, Lp))and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp))eq(L, Lp)eq(var(L), apply(T, S))false
eq(var(L), lambda(X, T))falseeq(apply(T, S), var(L))false
eq(apply(T, S), apply(Tp, Sp))and(eq(T, Tp), eq(S, Sp))eq(apply(T, S), lambda(X, Tp))false
eq(lambda(X, T), var(L))falseeq(lambda(X, T), apply(Tp, Sp))false
eq(lambda(X, T), lambda(Xp, Tp))and(eq(T, Tp), eq(X, Xp))if(true, var(K), var(L))var(K)
if(false, var(K), var(L))var(L)ren(var(L), var(K), var(Lp))if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S))apply(ren(X, Y, T), ren(X, Y, S))ren(X, Y, lambda(Z, T))lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Original Signature

Termination of terms over the following signature is verified: apply, lambda, var, if, false, true, ren, and, eq, nil, cons

Strategy


The following SCCs where found

eq#(lambda(X, T), lambda(Xp, Tp)) → eq#(T, Tp)eq#(apply(T, S), apply(Tp, Sp)) → eq#(T, Tp)
eq#(cons(T, L), cons(Tp, Lp)) → eq#(L, Lp)eq#(lambda(X, T), lambda(Xp, Tp)) → eq#(X, Xp)
eq#(var(L), var(Lp)) → eq#(L, Lp)eq#(cons(T, L), cons(Tp, Lp)) → eq#(T, Tp)
eq#(apply(T, S), apply(Tp, Sp)) → eq#(S, Sp)

ren#(X, Y, lambda(Z, T)) → ren#(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)ren#(X, Y, apply(T, S)) → ren#(X, Y, T)
ren#(X, Y, apply(T, S)) → ren#(X, Y, S)ren#(X, Y, lambda(Z, T)) → ren#(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

ren#(X, Y, lambda(Z, T))ren#(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)ren#(X, Y, apply(T, S))ren#(X, Y, T)
ren#(X, Y, apply(T, S))ren#(X, Y, S)ren#(X, Y, lambda(Z, T))ren#(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))

Rewrite Rules

and(false, false)falseand(true, false)false
and(false, true)falseand(true, true)true
eq(nil, nil)trueeq(cons(T, L), nil)false
eq(nil, cons(T, L))falseeq(cons(T, L), cons(Tp, Lp))and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp))eq(L, Lp)eq(var(L), apply(T, S))false
eq(var(L), lambda(X, T))falseeq(apply(T, S), var(L))false
eq(apply(T, S), apply(Tp, Sp))and(eq(T, Tp), eq(S, Sp))eq(apply(T, S), lambda(X, Tp))false
eq(lambda(X, T), var(L))falseeq(lambda(X, T), apply(Tp, Sp))false
eq(lambda(X, T), lambda(Xp, Tp))and(eq(T, Tp), eq(X, Xp))if(true, var(K), var(L))var(K)
if(false, var(K), var(L))var(L)ren(var(L), var(K), var(Lp))if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S))apply(ren(X, Y, T), ren(X, Y, S))ren(X, Y, lambda(Z, T))lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Original Signature

Termination of terms over the following signature is verified: apply, lambda, var, if, false, true, ren, and, eq, nil, cons

Strategy


Polynomial Interpretation

Improved Usable rules

if(true, var(K), var(L))var(K)if(false, var(K), var(L))var(L)
ren(X, Y, apply(T, S))apply(ren(X, Y, T), ren(X, Y, S))ren(X, Y, lambda(Z, T))lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
ren(var(L), var(K), var(Lp))if(eq(L, Lp), var(K), var(Lp))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

ren#(X, Y, lambda(Z, T))ren#(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)ren#(X, Y, lambda(Z, T))ren#(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))

Problem 4: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

ren#(X, Y, apply(T, S))ren#(X, Y, T)ren#(X, Y, apply(T, S))ren#(X, Y, S)

Rewrite Rules

and(false, false)falseand(true, false)false
and(false, true)falseand(true, true)true
eq(nil, nil)trueeq(cons(T, L), nil)false
eq(nil, cons(T, L))falseeq(cons(T, L), cons(Tp, Lp))and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp))eq(L, Lp)eq(var(L), apply(T, S))false
eq(var(L), lambda(X, T))falseeq(apply(T, S), var(L))false
eq(apply(T, S), apply(Tp, Sp))and(eq(T, Tp), eq(S, Sp))eq(apply(T, S), lambda(X, Tp))false
eq(lambda(X, T), var(L))falseeq(lambda(X, T), apply(Tp, Sp))false
eq(lambda(X, T), lambda(Xp, Tp))and(eq(T, Tp), eq(X, Xp))if(true, var(K), var(L))var(K)
if(false, var(K), var(L))var(L)ren(var(L), var(K), var(Lp))if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S))apply(ren(X, Y, T), ren(X, Y, S))ren(X, Y, lambda(Z, T))lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Original Signature

Termination of terms over the following signature is verified: lambda, apply, if, var, ren, true, false, cons, nil, eq, and

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

ren#(X, Y, apply(T, S))ren#(X, Y, T)ren#(X, Y, apply(T, S))ren#(X, Y, S)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

eq#(lambda(X, T), lambda(Xp, Tp))eq#(T, Tp)eq#(apply(T, S), apply(Tp, Sp))eq#(T, Tp)
eq#(cons(T, L), cons(Tp, Lp))eq#(L, Lp)eq#(lambda(X, T), lambda(Xp, Tp))eq#(X, Xp)
eq#(var(L), var(Lp))eq#(L, Lp)eq#(cons(T, L), cons(Tp, Lp))eq#(T, Tp)
eq#(apply(T, S), apply(Tp, Sp))eq#(S, Sp)

Rewrite Rules

and(false, false)falseand(true, false)false
and(false, true)falseand(true, true)true
eq(nil, nil)trueeq(cons(T, L), nil)false
eq(nil, cons(T, L))falseeq(cons(T, L), cons(Tp, Lp))and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp))eq(L, Lp)eq(var(L), apply(T, S))false
eq(var(L), lambda(X, T))falseeq(apply(T, S), var(L))false
eq(apply(T, S), apply(Tp, Sp))and(eq(T, Tp), eq(S, Sp))eq(apply(T, S), lambda(X, Tp))false
eq(lambda(X, T), var(L))falseeq(lambda(X, T), apply(Tp, Sp))false
eq(lambda(X, T), lambda(Xp, Tp))and(eq(T, Tp), eq(X, Xp))if(true, var(K), var(L))var(K)
if(false, var(K), var(L))var(L)ren(var(L), var(K), var(Lp))if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S))apply(ren(X, Y, T), ren(X, Y, S))ren(X, Y, lambda(Z, T))lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))

Original Signature

Termination of terms over the following signature is verified: apply, lambda, var, if, false, true, ren, and, eq, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

eq#(apply(T, S), apply(Tp, Sp))eq#(T, Tp)eq#(lambda(X, T), lambda(Xp, Tp))eq#(T, Tp)
eq#(lambda(X, T), lambda(Xp, Tp))eq#(X, Xp)eq#(cons(T, L), cons(Tp, Lp))eq#(L, Lp)
eq#(var(L), var(Lp))eq#(L, Lp)eq#(cons(T, L), cons(Tp, Lp))eq#(T, Tp)
eq#(apply(T, S), apply(Tp, Sp))eq#(S, Sp)