YES

The TRS could be proven terminating. The proof took 538 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (34ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 5 was processed with processor DependencyGraph (0ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4iUR (355ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

ifrm#(true, N, add(M, X))rm#(N, X)rm#(N, add(M, X))eq#(N, M)
eq#(s(X), s(Y))eq#(X, Y)ifrm#(false, N, add(M, X))rm#(N, X)
purge#(add(N, X))purge#(rm(N, X))rm#(N, add(M, X))ifrm#(eq(N, M), N, add(M, X))
purge#(add(N, X))rm#(N, X)

Rewrite Rules

eq(0, 0)trueeq(0, s(X))false
eq(s(X), 0)falseeq(s(X), s(Y))eq(X, Y)
rm(N, nil)nilrm(N, add(M, X))ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X))rm(N, X)ifrm(false, N, add(M, X))add(M, rm(N, X))
purge(nil)nilpurge(add(N, X))add(N, purge(rm(N, X)))

Original Signature

Termination of terms over the following signature is verified: 0, s, rm, true, false, ifrm, add, purge, eq, nil

Strategy


The following SCCs where found

eq#(s(X), s(Y)) → eq#(X, Y)

purge#(add(N, X)) → purge#(rm(N, X))

ifrm#(true, N, add(M, X)) → rm#(N, X)ifrm#(false, N, add(M, X)) → rm#(N, X)
rm#(N, add(M, X)) → ifrm#(eq(N, M), N, add(M, X))

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

ifrm#(true, N, add(M, X))rm#(N, X)ifrm#(false, N, add(M, X))rm#(N, X)
rm#(N, add(M, X))ifrm#(eq(N, M), N, add(M, X))

Rewrite Rules

eq(0, 0)trueeq(0, s(X))false
eq(s(X), 0)falseeq(s(X), s(Y))eq(X, Y)
rm(N, nil)nilrm(N, add(M, X))ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X))rm(N, X)ifrm(false, N, add(M, X))add(M, rm(N, X))
purge(nil)nilpurge(add(N, X))add(N, purge(rm(N, X)))

Original Signature

Termination of terms over the following signature is verified: 0, s, rm, true, false, ifrm, add, purge, eq, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

ifrm#(true, N, add(M, X))rm#(N, X)ifrm#(false, N, add(M, X))rm#(N, X)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

rm#(N, add(M, X))ifrm#(eq(N, M), N, add(M, X))

Rewrite Rules

eq(0, 0)trueeq(0, s(X))false
eq(s(X), 0)falseeq(s(X), s(Y))eq(X, Y)
rm(N, nil)nilrm(N, add(M, X))ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X))rm(N, X)ifrm(false, N, add(M, X))add(M, rm(N, X))
purge(nil)nilpurge(add(N, X))add(N, purge(rm(N, X)))

Original Signature

Termination of terms over the following signature is verified: 0, rm, s, ifrm, false, true, add, purge, nil, eq

Strategy


There are no SCCs!

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

eq#(s(X), s(Y))eq#(X, Y)

Rewrite Rules

eq(0, 0)trueeq(0, s(X))false
eq(s(X), 0)falseeq(s(X), s(Y))eq(X, Y)
rm(N, nil)nilrm(N, add(M, X))ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X))rm(N, X)ifrm(false, N, add(M, X))add(M, rm(N, X))
purge(nil)nilpurge(add(N, X))add(N, purge(rm(N, X)))

Original Signature

Termination of terms over the following signature is verified: 0, s, rm, true, false, ifrm, add, purge, eq, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

eq#(s(X), s(Y))eq#(X, Y)

Problem 4: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

purge#(add(N, X))purge#(rm(N, X))

Rewrite Rules

eq(0, 0)trueeq(0, s(X))false
eq(s(X), 0)falseeq(s(X), s(Y))eq(X, Y)
rm(N, nil)nilrm(N, add(M, X))ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X))rm(N, X)ifrm(false, N, add(M, X))add(M, rm(N, X))
purge(nil)nilpurge(add(N, X))add(N, purge(rm(N, X)))

Original Signature

Termination of terms over the following signature is verified: 0, s, rm, true, false, ifrm, add, purge, eq, nil

Strategy


Polynomial Interpretation

Improved Usable rules

ifrm(false, N, add(M, X))add(M, rm(N, X))rm(N, add(M, X))ifrm(eq(N, M), N, add(M, X))
rm(N, nil)nilifrm(true, N, add(M, X))rm(N, X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

purge#(add(N, X))purge#(rm(N, X))