YES

The TRS could be proven terminating. The proof took 1546 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (164ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4iUR (1092ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

minus#(+(x, y))minus#(minus(minus(x)))minus#(*(x, y))minus#(minus(minus(x)))
f#(minus(x))f#(x)minus#(+(x, y))minus#(y)
f#(minus(x))minus#(minus(minus(f(x))))minus#(*(x, y))minus#(y)
minus#(+(x, y))minus#(minus(y))f#(minus(x))minus#(f(x))
minus#(+(x, y))minus#(minus(x))minus#(+(x, y))minus#(minus(minus(y)))
minus#(*(x, y))minus#(minus(y))minus#(+(x, y))minus#(x)
minus#(*(x, y))minus#(x)f#(minus(x))minus#(minus(f(x)))
minus#(*(x, y))minus#(minus(x))minus#(*(x, y))minus#(minus(minus(y)))

Rewrite Rules

minus(minus(x))xminus(+(x, y))*(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y))+(minus(minus(minus(x))), minus(minus(minus(y))))f(minus(x))minus(minus(minus(f(x))))

Original Signature

Termination of terms over the following signature is verified: f, minus, *, +

Strategy


The following SCCs where found

f#(minus(x)) → f#(x)

minus#(*(x, y)) → minus#(y)minus#(*(x, y)) → minus#(minus(minus(x)))
minus#(+(x, y)) → minus#(minus(minus(x)))minus#(+(x, y)) → minus#(minus(y))
minus#(*(x, y)) → minus#(minus(y))minus#(+(x, y)) → minus#(minus(minus(y)))
minus#(+(x, y)) → minus#(minus(x))minus#(+(x, y)) → minus#(x)
minus#(*(x, y)) → minus#(x)minus#(*(x, y)) → minus#(minus(x))
minus#(+(x, y)) → minus#(y)minus#(*(x, y)) → minus#(minus(minus(y)))

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

f#(minus(x))f#(x)

Rewrite Rules

minus(minus(x))xminus(+(x, y))*(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y))+(minus(minus(minus(x))), minus(minus(minus(y))))f(minus(x))minus(minus(minus(f(x))))

Original Signature

Termination of terms over the following signature is verified: f, minus, *, +

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

f#(minus(x))f#(x)

Problem 3: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

minus#(*(x, y))minus#(y)minus#(*(x, y))minus#(minus(minus(x)))
minus#(+(x, y))minus#(minus(minus(x)))minus#(+(x, y))minus#(minus(y))
minus#(*(x, y))minus#(minus(y))minus#(+(x, y))minus#(minus(minus(y)))
minus#(+(x, y))minus#(minus(x))minus#(+(x, y))minus#(x)
minus#(*(x, y))minus#(x)minus#(*(x, y))minus#(minus(x))
minus#(*(x, y))minus#(minus(minus(y)))minus#(+(x, y))minus#(y)

Rewrite Rules

minus(minus(x))xminus(+(x, y))*(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y))+(minus(minus(minus(x))), minus(minus(minus(y))))f(minus(x))minus(minus(minus(f(x))))

Original Signature

Termination of terms over the following signature is verified: f, minus, *, +

Strategy


Polynomial Interpretation

Improved Usable rules

minus(*(x, y))+(minus(minus(minus(x))), minus(minus(minus(y))))minus(minus(x))x
minus(+(x, y))*(minus(minus(minus(x))), minus(minus(minus(y))))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

minus#(+(x, y))minus#(minus(minus(x)))minus#(*(x, y))minus#(minus(minus(x)))
minus#(+(x, y))minus#(y)minus#(*(x, y))minus#(y)
minus#(+(x, y))minus#(minus(y))minus#(+(x, y))minus#(minus(x))
minus#(+(x, y))minus#(minus(minus(y)))minus#(*(x, y))minus#(minus(y))
minus#(+(x, y))minus#(x)minus#(*(x, y))minus#(x)
minus#(*(x, y))minus#(minus(x))minus#(*(x, y))minus#(minus(minus(y)))