YES

The TRS could be proven terminating. The proof took 7591 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (4810ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (2127ms).
 |    | – Problem 5 was processed with processor DependencyGraph (4ms).
 |    |    | – Problem 6 was processed with processor PolynomialLinearRange4iUR (443ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 4 was processed with processor SubtermCriterion (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

+#(8, 3)c#(1, 1)*#(9, 3)c#(2, 7)
*#(9, 4)c#(3, 6)*#(x, c(y, z))*#(x, z)
*#(5, 4)c#(2, 0)+#(7, 6)c#(1, 3)
+#(4, 7)c#(1, 1)+#(2, 8)c#(1, 0)
*#(6, 8)c#(4, 8)*#(8, 5)c#(4, 0)
*#(6, 4)c#(2, 4)+#(3, 9)c#(1, 2)
*#(4, 8)c#(3, 2)*#(9, 8)c#(7, 2)
*#(3, 4)c#(1, 2)+#(9, 7)c#(1, 6)
*#(2, 9)c#(1, 8)+#(5, 5)c#(1, 0)
*#(8, 2)c#(1, 8)*#(7, 7)c#(4, 9)
*#(2, 6)c#(1, 2)+#(7, 4)c#(1, 1)
*#(4, 5)c#(2, 0)*#(7, 8)c#(5, 6)
*#(c(x, y), z)*#(y, z)*#(6, 3)c#(1, 8)
+#(5, 8)c#(1, 3)+#(8, 8)c#(1, 6)
*#(3, 6)c#(1, 8)*#(2, 8)c#(1, 6)
*#(3, 7)c#(2, 1)+#(6, 9)c#(1, 5)
*#(9, 5)c#(4, 5)+#(7, 9)c#(1, 6)
*#(6, 6)c#(3, 6)*#(x, c(y, z))c#(*(x, y), *(x, z))
*#(6, 7)c#(4, 2)*#(4, 4)c#(1, 6)
+#(4, 9)c#(1, 3)*#(5, 5)c#(2, 5)
+#(6, 4)c#(1, 0)*#(7, 4)c#(2, 8)
*#(8, 7)c#(5, 6)c#(x, c(y, z))c#(+(x, y), z)
*#(7, 6)c#(4, 2)+#(9, 2)c#(1, 1)
+#(8, 6)c#(1, 4)*#(2, 7)c#(1, 4)
+#(4, 8)c#(1, 2)+#(7, 5)c#(1, 2)
*#(4, 6)c#(2, 4)+#(2, 9)c#(1, 1)
+#(7, 3)c#(1, 0)*#(7, 3)c#(2, 1)
+#(9, 3)c#(1, 2)+#(6, 7)c#(1, 3)
*#(c(x, y), z)*#(x, z)*#(9, 2)c#(1, 8)
+#(5, 9)c#(1, 4)+#(9, 9)c#(1, 8)
+#(6, 6)c#(1, 2)*#(6, 2)c#(1, 2)
+#(7, 8)c#(1, 5)*#(9, 6)c#(5, 4)
+#(6, 5)c#(1, 1)+#(5, 6)c#(1, 1)
*#(7, 9)c#(6, 3)*#(2, 5)c#(1, 0)
+#(3, 8)c#(1, 1)*#(3, 8)c#(2, 4)
*#(6, 9)c#(5, 4)*#(4, 9)c#(3, 6)
*#(6, 5)c#(3, 0)*#(9, 9)c#(8, 1)
*#(c(x, y), z)c#(*(x, z), *(y, z))*#(5, 8)c#(4, 0)
*#(8, 9)c#(7, 2)+#(7, 7)c#(1, 4)
*#(8, 6)c#(4, 8)*#(5, 2)c#(1, 0)
*#(5, 7)c#(3, 5)+#(9, 1)c#(1, 0)
*#(9, 7)c#(6, 3)*#(x, c(y, z))*#(x, y)
*#(8, 8)c#(6, 4)*#(4, 7)c#(2, 8)
+#(c(x, y), z)+#(y, z)+#(1, 9)c#(1, 0)
+#(6, 8)c#(1, 4)*#(7, 2)c#(1, 4)
+#(4, 6)c#(1, 0)+#(8, 4)c#(1, 2)
*#(3, 5)c#(1, 5)+#(x, c(y, z))c#(y, +(x, z))
*#(8, 3)c#(2, 4)*#(5, 6)c#(3, 0)
*#(5, 9)c#(4, 5)+#(8, 2)c#(1, 0)
c#(x, c(y, z))+#(x, y)+#(x, c(y, z))+#(x, z)
*#(5, 3)c#(1, 5)+#(5, 7)c#(1, 2)
+#(8, 9)c#(1, 7)+#(9, 8)c#(1, 7)
+#(9, 5)c#(1, 4)*#(8, 4)c#(3, 2)
+#(c(x, y), z)c#(x, +(y, z))+#(8, 7)c#(1, 5)
+#(8, 5)c#(1, 3)+#(9, 4)c#(1, 3)
*#(7, 5)c#(3, 5)+#(9, 6)c#(1, 5)
*#(4, 3)c#(1, 2)*#(3, 9)c#(2, 7)
+#(3, 7)c#(1, 0)

Rewrite Rules

c(0, x)xc(x, c(y, z))c(+(x, y), z)
+(0, 0)0+(0, 1)1
+(0, 2)2+(0, 3)3
+(0, 4)4+(0, 5)5
+(0, 6)6+(0, 7)7
+(0, 8)8+(0, 9)9
+(1, 0)1+(1, 1)2
+(1, 2)3+(1, 3)4
+(1, 4)5+(1, 5)6
+(1, 6)7+(1, 7)8
+(1, 8)9+(1, 9)c(1, 0)
+(2, 0)2+(2, 1)3
+(2, 2)4+(2, 3)5
+(2, 4)6+(2, 5)7
+(2, 6)8+(2, 7)9
+(2, 8)c(1, 0)+(2, 9)c(1, 1)
+(3, 0)3+(3, 1)4
+(3, 2)5+(3, 3)6
+(3, 4)7+(3, 5)8
+(3, 6)9+(3, 7)c(1, 0)
+(3, 8)c(1, 1)+(3, 9)c(1, 2)
+(4, 0)4+(4, 1)5
+(4, 2)6+(4, 3)7
+(4, 4)8+(4, 5)9
+(4, 6)c(1, 0)+(4, 7)c(1, 1)
+(4, 8)c(1, 2)+(4, 9)c(1, 3)
+(5, 0)5+(5, 1)6
+(5, 2)7+(5, 3)8
+(5, 4)9+(5, 5)c(1, 0)
+(5, 6)c(1, 1)+(5, 7)c(1, 2)
+(5, 8)c(1, 3)+(5, 9)c(1, 4)
+(6, 0)6+(6, 1)7
+(6, 2)8+(6, 3)9
+(6, 4)c(1, 0)+(6, 5)c(1, 1)
+(6, 6)c(1, 2)+(6, 7)c(1, 3)
+(6, 8)c(1, 4)+(6, 9)c(1, 5)
+(7, 0)7+(7, 1)8
+(7, 2)9+(7, 3)c(1, 0)
+(7, 4)c(1, 1)+(7, 5)c(1, 2)
+(7, 6)c(1, 3)+(7, 7)c(1, 4)
+(7, 8)c(1, 5)+(7, 9)c(1, 6)
+(8, 0)8+(8, 1)9
+(8, 2)c(1, 0)+(8, 3)c(1, 1)
+(8, 4)c(1, 2)+(8, 5)c(1, 3)
+(8, 6)c(1, 4)+(8, 7)c(1, 5)
+(8, 8)c(1, 6)+(8, 9)c(1, 7)
+(9, 0)9+(9, 1)c(1, 0)
+(9, 2)c(1, 1)+(9, 3)c(1, 2)
+(9, 4)c(1, 3)+(9, 5)c(1, 4)
+(9, 6)c(1, 5)+(9, 7)c(1, 6)
+(9, 8)c(1, 7)+(9, 9)c(1, 8)
+(x, c(y, z))c(y, +(x, z))+(c(x, y), z)c(x, +(y, z))
*(0, 0)0*(0, 1)0
*(0, 2)0*(0, 3)0
*(0, 4)0*(0, 5)0
*(0, 6)0*(0, 7)0
*(0, 8)0*(0, 9)0
*(1, 0)0*(1, 1)1
*(1, 2)2*(1, 3)3
*(1, 4)4*(1, 5)5
*(1, 6)6*(1, 7)7
*(1, 8)8*(1, 9)9
*(2, 0)0*(2, 1)2
*(2, 2)4*(2, 3)6
*(2, 4)8*(2, 5)c(1, 0)
*(2, 6)c(1, 2)*(2, 7)c(1, 4)
*(2, 8)c(1, 6)*(2, 9)c(1, 8)
*(3, 0)0*(3, 1)3
*(3, 2)6*(3, 3)9
*(3, 4)c(1, 2)*(3, 5)c(1, 5)
*(3, 6)c(1, 8)*(3, 7)c(2, 1)
*(3, 8)c(2, 4)*(3, 9)c(2, 7)
*(4, 0)0*(4, 1)4
*(4, 2)8*(4, 3)c(1, 2)
*(4, 4)c(1, 6)*(4, 5)c(2, 0)
*(4, 6)c(2, 4)*(4, 7)c(2, 8)
*(4, 8)c(3, 2)*(4, 9)c(3, 6)
*(5, 0)0*(5, 1)5
*(5, 2)c(1, 0)*(5, 3)c(1, 5)
*(5, 4)c(2, 0)*(5, 5)c(2, 5)
*(5, 6)c(3, 0)*(5, 7)c(3, 5)
*(5, 8)c(4, 0)*(5, 9)c(4, 5)
*(6, 0)0*(6, 1)6
*(6, 2)c(1, 2)*(6, 3)c(1, 8)
*(6, 4)c(2, 4)*(6, 5)c(3, 0)
*(6, 6)c(3, 6)*(6, 7)c(4, 2)
*(6, 8)c(4, 8)*(6, 9)c(5, 4)
*(7, 0)0*(7, 1)7
*(7, 2)c(1, 4)*(7, 3)c(2, 1)
*(7, 4)c(2, 8)*(7, 5)c(3, 5)
*(7, 6)c(4, 2)*(7, 7)c(4, 9)
*(7, 8)c(5, 6)*(7, 9)c(6, 3)
*(8, 0)0*(8, 1)8
*(8, 2)c(1, 8)*(8, 3)c(2, 4)
*(8, 4)c(3, 2)*(8, 5)c(4, 0)
*(8, 6)c(4, 8)*(8, 7)c(5, 6)
*(8, 8)c(6, 4)*(8, 9)c(7, 2)
*(9, 0)0*(9, 1)9
*(9, 2)c(1, 8)*(9, 3)c(2, 7)
*(9, 4)c(3, 6)*(9, 5)c(4, 5)
*(9, 6)c(5, 4)*(9, 7)c(6, 3)
*(9, 8)c(7, 2)*(9, 9)c(8, 1)
*(x, c(y, z))c(*(x, y), *(x, z))*(c(x, y), z)c(*(x, z), *(y, z))

Original Signature

Termination of terms over the following signature is verified: c, *, +, 3, 2, 1, 0, 7, 6, 5, 4, 9, 8

Strategy


The following SCCs where found

*#(c(x, y), z) → *#(x, z)*#(x, c(y, z)) → *#(x, y)
*#(x, c(y, z)) → *#(x, z)*#(c(x, y), z) → *#(y, z)

c#(x, c(y, z)) → c#(+(x, y), z)+#(c(x, y), z) → +#(y, z)
c#(x, c(y, z)) → +#(x, y)+#(x, c(y, z)) → +#(x, z)
+#(c(x, y), z) → c#(x, +(y, z))+#(x, c(y, z)) → c#(y, +(x, z))

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

c#(x, c(y, z))c#(+(x, y), z)+#(c(x, y), z)+#(y, z)
c#(x, c(y, z))+#(x, y)+#(x, c(y, z))+#(x, z)
+#(c(x, y), z)c#(x, +(y, z))+#(x, c(y, z))c#(y, +(x, z))

Rewrite Rules

c(0, x)xc(x, c(y, z))c(+(x, y), z)
+(0, 0)0+(0, 1)1
+(0, 2)2+(0, 3)3
+(0, 4)4+(0, 5)5
+(0, 6)6+(0, 7)7
+(0, 8)8+(0, 9)9
+(1, 0)1+(1, 1)2
+(1, 2)3+(1, 3)4
+(1, 4)5+(1, 5)6
+(1, 6)7+(1, 7)8
+(1, 8)9+(1, 9)c(1, 0)
+(2, 0)2+(2, 1)3
+(2, 2)4+(2, 3)5
+(2, 4)6+(2, 5)7
+(2, 6)8+(2, 7)9
+(2, 8)c(1, 0)+(2, 9)c(1, 1)
+(3, 0)3+(3, 1)4
+(3, 2)5+(3, 3)6
+(3, 4)7+(3, 5)8
+(3, 6)9+(3, 7)c(1, 0)
+(3, 8)c(1, 1)+(3, 9)c(1, 2)
+(4, 0)4+(4, 1)5
+(4, 2)6+(4, 3)7
+(4, 4)8+(4, 5)9
+(4, 6)c(1, 0)+(4, 7)c(1, 1)
+(4, 8)c(1, 2)+(4, 9)c(1, 3)
+(5, 0)5+(5, 1)6
+(5, 2)7+(5, 3)8
+(5, 4)9+(5, 5)c(1, 0)
+(5, 6)c(1, 1)+(5, 7)c(1, 2)
+(5, 8)c(1, 3)+(5, 9)c(1, 4)
+(6, 0)6+(6, 1)7
+(6, 2)8+(6, 3)9
+(6, 4)c(1, 0)+(6, 5)c(1, 1)
+(6, 6)c(1, 2)+(6, 7)c(1, 3)
+(6, 8)c(1, 4)+(6, 9)c(1, 5)
+(7, 0)7+(7, 1)8
+(7, 2)9+(7, 3)c(1, 0)
+(7, 4)c(1, 1)+(7, 5)c(1, 2)
+(7, 6)c(1, 3)+(7, 7)c(1, 4)
+(7, 8)c(1, 5)+(7, 9)c(1, 6)
+(8, 0)8+(8, 1)9
+(8, 2)c(1, 0)+(8, 3)c(1, 1)
+(8, 4)c(1, 2)+(8, 5)c(1, 3)
+(8, 6)c(1, 4)+(8, 7)c(1, 5)
+(8, 8)c(1, 6)+(8, 9)c(1, 7)
+(9, 0)9+(9, 1)c(1, 0)
+(9, 2)c(1, 1)+(9, 3)c(1, 2)
+(9, 4)c(1, 3)+(9, 5)c(1, 4)
+(9, 6)c(1, 5)+(9, 7)c(1, 6)
+(9, 8)c(1, 7)+(9, 9)c(1, 8)
+(x, c(y, z))c(y, +(x, z))+(c(x, y), z)c(x, +(y, z))
*(0, 0)0*(0, 1)0
*(0, 2)0*(0, 3)0
*(0, 4)0*(0, 5)0
*(0, 6)0*(0, 7)0
*(0, 8)0*(0, 9)0
*(1, 0)0*(1, 1)1
*(1, 2)2*(1, 3)3
*(1, 4)4*(1, 5)5
*(1, 6)6*(1, 7)7
*(1, 8)8*(1, 9)9
*(2, 0)0*(2, 1)2
*(2, 2)4*(2, 3)6
*(2, 4)8*(2, 5)c(1, 0)
*(2, 6)c(1, 2)*(2, 7)c(1, 4)
*(2, 8)c(1, 6)*(2, 9)c(1, 8)
*(3, 0)0*(3, 1)3
*(3, 2)6*(3, 3)9
*(3, 4)c(1, 2)*(3, 5)c(1, 5)
*(3, 6)c(1, 8)*(3, 7)c(2, 1)
*(3, 8)c(2, 4)*(3, 9)c(2, 7)
*(4, 0)0*(4, 1)4
*(4, 2)8*(4, 3)c(1, 2)
*(4, 4)c(1, 6)*(4, 5)c(2, 0)
*(4, 6)c(2, 4)*(4, 7)c(2, 8)
*(4, 8)c(3, 2)*(4, 9)c(3, 6)
*(5, 0)0*(5, 1)5
*(5, 2)c(1, 0)*(5, 3)c(1, 5)
*(5, 4)c(2, 0)*(5, 5)c(2, 5)
*(5, 6)c(3, 0)*(5, 7)c(3, 5)
*(5, 8)c(4, 0)*(5, 9)c(4, 5)
*(6, 0)0*(6, 1)6
*(6, 2)c(1, 2)*(6, 3)c(1, 8)
*(6, 4)c(2, 4)*(6, 5)c(3, 0)
*(6, 6)c(3, 6)*(6, 7)c(4, 2)
*(6, 8)c(4, 8)*(6, 9)c(5, 4)
*(7, 0)0*(7, 1)7
*(7, 2)c(1, 4)*(7, 3)c(2, 1)
*(7, 4)c(2, 8)*(7, 5)c(3, 5)
*(7, 6)c(4, 2)*(7, 7)c(4, 9)
*(7, 8)c(5, 6)*(7, 9)c(6, 3)
*(8, 0)0*(8, 1)8
*(8, 2)c(1, 8)*(8, 3)c(2, 4)
*(8, 4)c(3, 2)*(8, 5)c(4, 0)
*(8, 6)c(4, 8)*(8, 7)c(5, 6)
*(8, 8)c(6, 4)*(8, 9)c(7, 2)
*(9, 0)0*(9, 1)9
*(9, 2)c(1, 8)*(9, 3)c(2, 7)
*(9, 4)c(3, 6)*(9, 5)c(4, 5)
*(9, 6)c(5, 4)*(9, 7)c(6, 3)
*(9, 8)c(7, 2)*(9, 9)c(8, 1)
*(x, c(y, z))c(*(x, y), *(x, z))*(c(x, y), z)c(*(x, z), *(y, z))

Original Signature

Termination of terms over the following signature is verified: c, *, +, 3, 2, 1, 0, 7, 6, 5, 4, 9, 8

Strategy


Polynomial Interpretation

Improved Usable rules

+(9, 6)c(1, 5)+(3, 3)6
+(5, 1)6+(5, 7)c(1, 2)
+(3, 6)9+(3, 7)c(1, 0)
+(7, 4)c(1, 1)+(1, 1)2
+(3, 9)c(1, 2)+(2, 4)6
+(4, 4)8+(5, 2)7
c(0, x)x+(8, 4)c(1, 2)
+(8, 6)c(1, 4)+(9, 8)c(1, 7)
+(4, 9)c(1, 3)+(3, 8)c(1, 1)
+(c(x, y), z)c(x, +(y, z))+(0, 9)9
+(3, 4)7+(1, 8)9
+(6, 8)c(1, 4)+(9, 0)9
+(5, 6)c(1, 1)+(9, 3)c(1, 2)
+(1, 7)8+(9, 5)c(1, 4)
+(6, 0)6+(1, 6)7
+(3, 2)5+(4, 8)c(1, 2)
+(2, 3)5+(1, 3)4
+(2, 6)8+(4, 5)9
+(6, 9)c(1, 5)+(6, 7)c(1, 3)
+(8, 0)8+(9, 7)c(1, 6)
+(2, 8)c(1, 0)+(6, 3)9
+(8, 2)c(1, 0)+(0, 8)8
+(0, 1)1+(2, 9)c(1, 1)
+(4, 0)4+(5, 9)c(1, 4)
+(1, 2)3+(9, 1)c(1, 0)
+(7, 0)7+(0, 0)0
+(1, 9)c(1, 0)+(2, 5)7
+(1, 5)6+(7, 6)c(1, 3)
+(0, 2)2+(6, 5)c(1, 1)
+(4, 1)5+(7, 5)c(1, 2)
+(2, 2)4+(5, 3)8
+(7, 9)c(1, 6)+(7, 2)9
c(x, c(y, z))c(+(x, y), z)+(8, 8)c(1, 6)
+(7, 3)c(1, 0)+(1, 0)1
+(7, 7)c(1, 4)+(5, 5)c(1, 0)
+(1, 4)5+(9, 9)c(1, 8)
+(2, 7)9+(0, 6)6
+(5, 4)9+(4, 2)6
+(6, 1)7+(7, 1)8
+(3, 5)8+(8, 9)c(1, 7)
+(8, 1)9+(9, 4)c(1, 3)
+(6, 2)8+(2, 1)3
+(0, 3)3+(6, 6)c(1, 2)
+(4, 6)c(1, 0)+(x, c(y, z))c(y, +(x, z))
+(4, 3)7+(6, 4)c(1, 0)
+(0, 5)5+(0, 7)7
+(8, 3)c(1, 1)+(3, 0)3
+(4, 7)c(1, 1)+(8, 5)c(1, 3)
+(2, 0)2+(7, 8)c(1, 5)
+(8, 7)c(1, 5)+(9, 2)c(1, 1)
+(5, 0)5+(3, 1)4
+(0, 4)4+(5, 8)c(1, 3)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

+#(c(x, y), z)+#(y, z)+#(x, c(y, z))+#(x, z)
c#(x, c(y, z))+#(x, y)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

c#(x, c(y, z))c#(+(x, y), z)+#(c(x, y), z)c#(x, +(y, z))
+#(x, c(y, z))c#(y, +(x, z))

Rewrite Rules

c(0, x)xc(x, c(y, z))c(+(x, y), z)
+(0, 0)0+(0, 1)1
+(0, 2)2+(0, 3)3
+(0, 4)4+(0, 5)5
+(0, 6)6+(0, 7)7
+(0, 8)8+(0, 9)9
+(1, 0)1+(1, 1)2
+(1, 2)3+(1, 3)4
+(1, 4)5+(1, 5)6
+(1, 6)7+(1, 7)8
+(1, 8)9+(1, 9)c(1, 0)
+(2, 0)2+(2, 1)3
+(2, 2)4+(2, 3)5
+(2, 4)6+(2, 5)7
+(2, 6)8+(2, 7)9
+(2, 8)c(1, 0)+(2, 9)c(1, 1)
+(3, 0)3+(3, 1)4
+(3, 2)5+(3, 3)6
+(3, 4)7+(3, 5)8
+(3, 6)9+(3, 7)c(1, 0)
+(3, 8)c(1, 1)+(3, 9)c(1, 2)
+(4, 0)4+(4, 1)5
+(4, 2)6+(4, 3)7
+(4, 4)8+(4, 5)9
+(4, 6)c(1, 0)+(4, 7)c(1, 1)
+(4, 8)c(1, 2)+(4, 9)c(1, 3)
+(5, 0)5+(5, 1)6
+(5, 2)7+(5, 3)8
+(5, 4)9+(5, 5)c(1, 0)
+(5, 6)c(1, 1)+(5, 7)c(1, 2)
+(5, 8)c(1, 3)+(5, 9)c(1, 4)
+(6, 0)6+(6, 1)7
+(6, 2)8+(6, 3)9
+(6, 4)c(1, 0)+(6, 5)c(1, 1)
+(6, 6)c(1, 2)+(6, 7)c(1, 3)
+(6, 8)c(1, 4)+(6, 9)c(1, 5)
+(7, 0)7+(7, 1)8
+(7, 2)9+(7, 3)c(1, 0)
+(7, 4)c(1, 1)+(7, 5)c(1, 2)
+(7, 6)c(1, 3)+(7, 7)c(1, 4)
+(7, 8)c(1, 5)+(7, 9)c(1, 6)
+(8, 0)8+(8, 1)9
+(8, 2)c(1, 0)+(8, 3)c(1, 1)
+(8, 4)c(1, 2)+(8, 5)c(1, 3)
+(8, 6)c(1, 4)+(8, 7)c(1, 5)
+(8, 8)c(1, 6)+(8, 9)c(1, 7)
+(9, 0)9+(9, 1)c(1, 0)
+(9, 2)c(1, 1)+(9, 3)c(1, 2)
+(9, 4)c(1, 3)+(9, 5)c(1, 4)
+(9, 6)c(1, 5)+(9, 7)c(1, 6)
+(9, 8)c(1, 7)+(9, 9)c(1, 8)
+(x, c(y, z))c(y, +(x, z))+(c(x, y), z)c(x, +(y, z))
*(0, 0)0*(0, 1)0
*(0, 2)0*(0, 3)0
*(0, 4)0*(0, 5)0
*(0, 6)0*(0, 7)0
*(0, 8)0*(0, 9)0
*(1, 0)0*(1, 1)1
*(1, 2)2*(1, 3)3
*(1, 4)4*(1, 5)5
*(1, 6)6*(1, 7)7
*(1, 8)8*(1, 9)9
*(2, 0)0*(2, 1)2
*(2, 2)4*(2, 3)6
*(2, 4)8*(2, 5)c(1, 0)
*(2, 6)c(1, 2)*(2, 7)c(1, 4)
*(2, 8)c(1, 6)*(2, 9)c(1, 8)
*(3, 0)0*(3, 1)3
*(3, 2)6*(3, 3)9
*(3, 4)c(1, 2)*(3, 5)c(1, 5)
*(3, 6)c(1, 8)*(3, 7)c(2, 1)
*(3, 8)c(2, 4)*(3, 9)c(2, 7)
*(4, 0)0*(4, 1)4
*(4, 2)8*(4, 3)c(1, 2)
*(4, 4)c(1, 6)*(4, 5)c(2, 0)
*(4, 6)c(2, 4)*(4, 7)c(2, 8)
*(4, 8)c(3, 2)*(4, 9)c(3, 6)
*(5, 0)0*(5, 1)5
*(5, 2)c(1, 0)*(5, 3)c(1, 5)
*(5, 4)c(2, 0)*(5, 5)c(2, 5)
*(5, 6)c(3, 0)*(5, 7)c(3, 5)
*(5, 8)c(4, 0)*(5, 9)c(4, 5)
*(6, 0)0*(6, 1)6
*(6, 2)c(1, 2)*(6, 3)c(1, 8)
*(6, 4)c(2, 4)*(6, 5)c(3, 0)
*(6, 6)c(3, 6)*(6, 7)c(4, 2)
*(6, 8)c(4, 8)*(6, 9)c(5, 4)
*(7, 0)0*(7, 1)7
*(7, 2)c(1, 4)*(7, 3)c(2, 1)
*(7, 4)c(2, 8)*(7, 5)c(3, 5)
*(7, 6)c(4, 2)*(7, 7)c(4, 9)
*(7, 8)c(5, 6)*(7, 9)c(6, 3)
*(8, 0)0*(8, 1)8
*(8, 2)c(1, 8)*(8, 3)c(2, 4)
*(8, 4)c(3, 2)*(8, 5)c(4, 0)
*(8, 6)c(4, 8)*(8, 7)c(5, 6)
*(8, 8)c(6, 4)*(8, 9)c(7, 2)
*(9, 0)0*(9, 1)9
*(9, 2)c(1, 8)*(9, 3)c(2, 7)
*(9, 4)c(3, 6)*(9, 5)c(4, 5)
*(9, 6)c(5, 4)*(9, 7)c(6, 3)
*(9, 8)c(7, 2)*(9, 9)c(8, 1)
*(x, c(y, z))c(*(x, y), *(x, z))*(c(x, y), z)c(*(x, z), *(y, z))

Original Signature

Termination of terms over the following signature is verified: c, *, +, 3, 2, 1, 0, 7, 6, 5, 4, 9, 8

Strategy


The following SCCs where found

c#(x, c(y, z)) → c#(+(x, y), z)

Problem 6: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

c#(x, c(y, z))c#(+(x, y), z)

Rewrite Rules

c(0, x)xc(x, c(y, z))c(+(x, y), z)
+(0, 0)0+(0, 1)1
+(0, 2)2+(0, 3)3
+(0, 4)4+(0, 5)5
+(0, 6)6+(0, 7)7
+(0, 8)8+(0, 9)9
+(1, 0)1+(1, 1)2
+(1, 2)3+(1, 3)4
+(1, 4)5+(1, 5)6
+(1, 6)7+(1, 7)8
+(1, 8)9+(1, 9)c(1, 0)
+(2, 0)2+(2, 1)3
+(2, 2)4+(2, 3)5
+(2, 4)6+(2, 5)7
+(2, 6)8+(2, 7)9
+(2, 8)c(1, 0)+(2, 9)c(1, 1)
+(3, 0)3+(3, 1)4
+(3, 2)5+(3, 3)6
+(3, 4)7+(3, 5)8
+(3, 6)9+(3, 7)c(1, 0)
+(3, 8)c(1, 1)+(3, 9)c(1, 2)
+(4, 0)4+(4, 1)5
+(4, 2)6+(4, 3)7
+(4, 4)8+(4, 5)9
+(4, 6)c(1, 0)+(4, 7)c(1, 1)
+(4, 8)c(1, 2)+(4, 9)c(1, 3)
+(5, 0)5+(5, 1)6
+(5, 2)7+(5, 3)8
+(5, 4)9+(5, 5)c(1, 0)
+(5, 6)c(1, 1)+(5, 7)c(1, 2)
+(5, 8)c(1, 3)+(5, 9)c(1, 4)
+(6, 0)6+(6, 1)7
+(6, 2)8+(6, 3)9
+(6, 4)c(1, 0)+(6, 5)c(1, 1)
+(6, 6)c(1, 2)+(6, 7)c(1, 3)
+(6, 8)c(1, 4)+(6, 9)c(1, 5)
+(7, 0)7+(7, 1)8
+(7, 2)9+(7, 3)c(1, 0)
+(7, 4)c(1, 1)+(7, 5)c(1, 2)
+(7, 6)c(1, 3)+(7, 7)c(1, 4)
+(7, 8)c(1, 5)+(7, 9)c(1, 6)
+(8, 0)8+(8, 1)9
+(8, 2)c(1, 0)+(8, 3)c(1, 1)
+(8, 4)c(1, 2)+(8, 5)c(1, 3)
+(8, 6)c(1, 4)+(8, 7)c(1, 5)
+(8, 8)c(1, 6)+(8, 9)c(1, 7)
+(9, 0)9+(9, 1)c(1, 0)
+(9, 2)c(1, 1)+(9, 3)c(1, 2)
+(9, 4)c(1, 3)+(9, 5)c(1, 4)
+(9, 6)c(1, 5)+(9, 7)c(1, 6)
+(9, 8)c(1, 7)+(9, 9)c(1, 8)
+(x, c(y, z))c(y, +(x, z))+(c(x, y), z)c(x, +(y, z))
*(0, 0)0*(0, 1)0
*(0, 2)0*(0, 3)0
*(0, 4)0*(0, 5)0
*(0, 6)0*(0, 7)0
*(0, 8)0*(0, 9)0
*(1, 0)0*(1, 1)1
*(1, 2)2*(1, 3)3
*(1, 4)4*(1, 5)5
*(1, 6)6*(1, 7)7
*(1, 8)8*(1, 9)9
*(2, 0)0*(2, 1)2
*(2, 2)4*(2, 3)6
*(2, 4)8*(2, 5)c(1, 0)
*(2, 6)c(1, 2)*(2, 7)c(1, 4)
*(2, 8)c(1, 6)*(2, 9)c(1, 8)
*(3, 0)0*(3, 1)3
*(3, 2)6*(3, 3)9
*(3, 4)c(1, 2)*(3, 5)c(1, 5)
*(3, 6)c(1, 8)*(3, 7)c(2, 1)
*(3, 8)c(2, 4)*(3, 9)c(2, 7)
*(4, 0)0*(4, 1)4
*(4, 2)8*(4, 3)c(1, 2)
*(4, 4)c(1, 6)*(4, 5)c(2, 0)
*(4, 6)c(2, 4)*(4, 7)c(2, 8)
*(4, 8)c(3, 2)*(4, 9)c(3, 6)
*(5, 0)0*(5, 1)5
*(5, 2)c(1, 0)*(5, 3)c(1, 5)
*(5, 4)c(2, 0)*(5, 5)c(2, 5)
*(5, 6)c(3, 0)*(5, 7)c(3, 5)
*(5, 8)c(4, 0)*(5, 9)c(4, 5)
*(6, 0)0*(6, 1)6
*(6, 2)c(1, 2)*(6, 3)c(1, 8)
*(6, 4)c(2, 4)*(6, 5)c(3, 0)
*(6, 6)c(3, 6)*(6, 7)c(4, 2)
*(6, 8)c(4, 8)*(6, 9)c(5, 4)
*(7, 0)0*(7, 1)7
*(7, 2)c(1, 4)*(7, 3)c(2, 1)
*(7, 4)c(2, 8)*(7, 5)c(3, 5)
*(7, 6)c(4, 2)*(7, 7)c(4, 9)
*(7, 8)c(5, 6)*(7, 9)c(6, 3)
*(8, 0)0*(8, 1)8
*(8, 2)c(1, 8)*(8, 3)c(2, 4)
*(8, 4)c(3, 2)*(8, 5)c(4, 0)
*(8, 6)c(4, 8)*(8, 7)c(5, 6)
*(8, 8)c(6, 4)*(8, 9)c(7, 2)
*(9, 0)0*(9, 1)9
*(9, 2)c(1, 8)*(9, 3)c(2, 7)
*(9, 4)c(3, 6)*(9, 5)c(4, 5)
*(9, 6)c(5, 4)*(9, 7)c(6, 3)
*(9, 8)c(7, 2)*(9, 9)c(8, 1)
*(x, c(y, z))c(*(x, y), *(x, z))*(c(x, y), z)c(*(x, z), *(y, z))

Original Signature

Termination of terms over the following signature is verified: c, *, +, 3, 2, 1, 0, 7, 6, 5, 4, 9, 8

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

c#(x, c(y, z))c#(+(x, y), z)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

*#(c(x, y), z)*#(x, z)*#(x, c(y, z))*#(x, y)
*#(x, c(y, z))*#(x, z)*#(c(x, y), z)*#(y, z)

Rewrite Rules

c(0, x)xc(x, c(y, z))c(+(x, y), z)
+(0, 0)0+(0, 1)1
+(0, 2)2+(0, 3)3
+(0, 4)4+(0, 5)5
+(0, 6)6+(0, 7)7
+(0, 8)8+(0, 9)9
+(1, 0)1+(1, 1)2
+(1, 2)3+(1, 3)4
+(1, 4)5+(1, 5)6
+(1, 6)7+(1, 7)8
+(1, 8)9+(1, 9)c(1, 0)
+(2, 0)2+(2, 1)3
+(2, 2)4+(2, 3)5
+(2, 4)6+(2, 5)7
+(2, 6)8+(2, 7)9
+(2, 8)c(1, 0)+(2, 9)c(1, 1)
+(3, 0)3+(3, 1)4
+(3, 2)5+(3, 3)6
+(3, 4)7+(3, 5)8
+(3, 6)9+(3, 7)c(1, 0)
+(3, 8)c(1, 1)+(3, 9)c(1, 2)
+(4, 0)4+(4, 1)5
+(4, 2)6+(4, 3)7
+(4, 4)8+(4, 5)9
+(4, 6)c(1, 0)+(4, 7)c(1, 1)
+(4, 8)c(1, 2)+(4, 9)c(1, 3)
+(5, 0)5+(5, 1)6
+(5, 2)7+(5, 3)8
+(5, 4)9+(5, 5)c(1, 0)
+(5, 6)c(1, 1)+(5, 7)c(1, 2)
+(5, 8)c(1, 3)+(5, 9)c(1, 4)
+(6, 0)6+(6, 1)7
+(6, 2)8+(6, 3)9
+(6, 4)c(1, 0)+(6, 5)c(1, 1)
+(6, 6)c(1, 2)+(6, 7)c(1, 3)
+(6, 8)c(1, 4)+(6, 9)c(1, 5)
+(7, 0)7+(7, 1)8
+(7, 2)9+(7, 3)c(1, 0)
+(7, 4)c(1, 1)+(7, 5)c(1, 2)
+(7, 6)c(1, 3)+(7, 7)c(1, 4)
+(7, 8)c(1, 5)+(7, 9)c(1, 6)
+(8, 0)8+(8, 1)9
+(8, 2)c(1, 0)+(8, 3)c(1, 1)
+(8, 4)c(1, 2)+(8, 5)c(1, 3)
+(8, 6)c(1, 4)+(8, 7)c(1, 5)
+(8, 8)c(1, 6)+(8, 9)c(1, 7)
+(9, 0)9+(9, 1)c(1, 0)
+(9, 2)c(1, 1)+(9, 3)c(1, 2)
+(9, 4)c(1, 3)+(9, 5)c(1, 4)
+(9, 6)c(1, 5)+(9, 7)c(1, 6)
+(9, 8)c(1, 7)+(9, 9)c(1, 8)
+(x, c(y, z))c(y, +(x, z))+(c(x, y), z)c(x, +(y, z))
*(0, 0)0*(0, 1)0
*(0, 2)0*(0, 3)0
*(0, 4)0*(0, 5)0
*(0, 6)0*(0, 7)0
*(0, 8)0*(0, 9)0
*(1, 0)0*(1, 1)1
*(1, 2)2*(1, 3)3
*(1, 4)4*(1, 5)5
*(1, 6)6*(1, 7)7
*(1, 8)8*(1, 9)9
*(2, 0)0*(2, 1)2
*(2, 2)4*(2, 3)6
*(2, 4)8*(2, 5)c(1, 0)
*(2, 6)c(1, 2)*(2, 7)c(1, 4)
*(2, 8)c(1, 6)*(2, 9)c(1, 8)
*(3, 0)0*(3, 1)3
*(3, 2)6*(3, 3)9
*(3, 4)c(1, 2)*(3, 5)c(1, 5)
*(3, 6)c(1, 8)*(3, 7)c(2, 1)
*(3, 8)c(2, 4)*(3, 9)c(2, 7)
*(4, 0)0*(4, 1)4
*(4, 2)8*(4, 3)c(1, 2)
*(4, 4)c(1, 6)*(4, 5)c(2, 0)
*(4, 6)c(2, 4)*(4, 7)c(2, 8)
*(4, 8)c(3, 2)*(4, 9)c(3, 6)
*(5, 0)0*(5, 1)5
*(5, 2)c(1, 0)*(5, 3)c(1, 5)
*(5, 4)c(2, 0)*(5, 5)c(2, 5)
*(5, 6)c(3, 0)*(5, 7)c(3, 5)
*(5, 8)c(4, 0)*(5, 9)c(4, 5)
*(6, 0)0*(6, 1)6
*(6, 2)c(1, 2)*(6, 3)c(1, 8)
*(6, 4)c(2, 4)*(6, 5)c(3, 0)
*(6, 6)c(3, 6)*(6, 7)c(4, 2)
*(6, 8)c(4, 8)*(6, 9)c(5, 4)
*(7, 0)0*(7, 1)7
*(7, 2)c(1, 4)*(7, 3)c(2, 1)
*(7, 4)c(2, 8)*(7, 5)c(3, 5)
*(7, 6)c(4, 2)*(7, 7)c(4, 9)
*(7, 8)c(5, 6)*(7, 9)c(6, 3)
*(8, 0)0*(8, 1)8
*(8, 2)c(1, 8)*(8, 3)c(2, 4)
*(8, 4)c(3, 2)*(8, 5)c(4, 0)
*(8, 6)c(4, 8)*(8, 7)c(5, 6)
*(8, 8)c(6, 4)*(8, 9)c(7, 2)
*(9, 0)0*(9, 1)9
*(9, 2)c(1, 8)*(9, 3)c(2, 7)
*(9, 4)c(3, 6)*(9, 5)c(4, 5)
*(9, 6)c(5, 4)*(9, 7)c(6, 3)
*(9, 8)c(7, 2)*(9, 9)c(8, 1)
*(x, c(y, z))c(*(x, y), *(x, z))*(c(x, y), z)c(*(x, z), *(y, z))

Original Signature

Termination of terms over the following signature is verified: c, *, +, 3, 2, 1, 0, 7, 6, 5, 4, 9, 8

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

*#(c(x, y), z)*#(x, z)*#(c(x, y), z)*#(y, z)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

*#(x, c(y, z))*#(x, y)*#(x, c(y, z))*#(x, z)

Rewrite Rules

c(0, x)xc(x, c(y, z))c(+(x, y), z)
+(0, 0)0+(0, 1)1
+(0, 2)2+(0, 3)3
+(0, 4)4+(0, 5)5
+(0, 6)6+(0, 7)7
+(0, 8)8+(0, 9)9
+(1, 0)1+(1, 1)2
+(1, 2)3+(1, 3)4
+(1, 4)5+(1, 5)6
+(1, 6)7+(1, 7)8
+(1, 8)9+(1, 9)c(1, 0)
+(2, 0)2+(2, 1)3
+(2, 2)4+(2, 3)5
+(2, 4)6+(2, 5)7
+(2, 6)8+(2, 7)9
+(2, 8)c(1, 0)+(2, 9)c(1, 1)
+(3, 0)3+(3, 1)4
+(3, 2)5+(3, 3)6
+(3, 4)7+(3, 5)8
+(3, 6)9+(3, 7)c(1, 0)
+(3, 8)c(1, 1)+(3, 9)c(1, 2)
+(4, 0)4+(4, 1)5
+(4, 2)6+(4, 3)7
+(4, 4)8+(4, 5)9
+(4, 6)c(1, 0)+(4, 7)c(1, 1)
+(4, 8)c(1, 2)+(4, 9)c(1, 3)
+(5, 0)5+(5, 1)6
+(5, 2)7+(5, 3)8
+(5, 4)9+(5, 5)c(1, 0)
+(5, 6)c(1, 1)+(5, 7)c(1, 2)
+(5, 8)c(1, 3)+(5, 9)c(1, 4)
+(6, 0)6+(6, 1)7
+(6, 2)8+(6, 3)9
+(6, 4)c(1, 0)+(6, 5)c(1, 1)
+(6, 6)c(1, 2)+(6, 7)c(1, 3)
+(6, 8)c(1, 4)+(6, 9)c(1, 5)
+(7, 0)7+(7, 1)8
+(7, 2)9+(7, 3)c(1, 0)
+(7, 4)c(1, 1)+(7, 5)c(1, 2)
+(7, 6)c(1, 3)+(7, 7)c(1, 4)
+(7, 8)c(1, 5)+(7, 9)c(1, 6)
+(8, 0)8+(8, 1)9
+(8, 2)c(1, 0)+(8, 3)c(1, 1)
+(8, 4)c(1, 2)+(8, 5)c(1, 3)
+(8, 6)c(1, 4)+(8, 7)c(1, 5)
+(8, 8)c(1, 6)+(8, 9)c(1, 7)
+(9, 0)9+(9, 1)c(1, 0)
+(9, 2)c(1, 1)+(9, 3)c(1, 2)
+(9, 4)c(1, 3)+(9, 5)c(1, 4)
+(9, 6)c(1, 5)+(9, 7)c(1, 6)
+(9, 8)c(1, 7)+(9, 9)c(1, 8)
+(x, c(y, z))c(y, +(x, z))+(c(x, y), z)c(x, +(y, z))
*(0, 0)0*(0, 1)0
*(0, 2)0*(0, 3)0
*(0, 4)0*(0, 5)0
*(0, 6)0*(0, 7)0
*(0, 8)0*(0, 9)0
*(1, 0)0*(1, 1)1
*(1, 2)2*(1, 3)3
*(1, 4)4*(1, 5)5
*(1, 6)6*(1, 7)7
*(1, 8)8*(1, 9)9
*(2, 0)0*(2, 1)2
*(2, 2)4*(2, 3)6
*(2, 4)8*(2, 5)c(1, 0)
*(2, 6)c(1, 2)*(2, 7)c(1, 4)
*(2, 8)c(1, 6)*(2, 9)c(1, 8)
*(3, 0)0*(3, 1)3
*(3, 2)6*(3, 3)9
*(3, 4)c(1, 2)*(3, 5)c(1, 5)
*(3, 6)c(1, 8)*(3, 7)c(2, 1)
*(3, 8)c(2, 4)*(3, 9)c(2, 7)
*(4, 0)0*(4, 1)4
*(4, 2)8*(4, 3)c(1, 2)
*(4, 4)c(1, 6)*(4, 5)c(2, 0)
*(4, 6)c(2, 4)*(4, 7)c(2, 8)
*(4, 8)c(3, 2)*(4, 9)c(3, 6)
*(5, 0)0*(5, 1)5
*(5, 2)c(1, 0)*(5, 3)c(1, 5)
*(5, 4)c(2, 0)*(5, 5)c(2, 5)
*(5, 6)c(3, 0)*(5, 7)c(3, 5)
*(5, 8)c(4, 0)*(5, 9)c(4, 5)
*(6, 0)0*(6, 1)6
*(6, 2)c(1, 2)*(6, 3)c(1, 8)
*(6, 4)c(2, 4)*(6, 5)c(3, 0)
*(6, 6)c(3, 6)*(6, 7)c(4, 2)
*(6, 8)c(4, 8)*(6, 9)c(5, 4)
*(7, 0)0*(7, 1)7
*(7, 2)c(1, 4)*(7, 3)c(2, 1)
*(7, 4)c(2, 8)*(7, 5)c(3, 5)
*(7, 6)c(4, 2)*(7, 7)c(4, 9)
*(7, 8)c(5, 6)*(7, 9)c(6, 3)
*(8, 0)0*(8, 1)8
*(8, 2)c(1, 8)*(8, 3)c(2, 4)
*(8, 4)c(3, 2)*(8, 5)c(4, 0)
*(8, 6)c(4, 8)*(8, 7)c(5, 6)
*(8, 8)c(6, 4)*(8, 9)c(7, 2)
*(9, 0)0*(9, 1)9
*(9, 2)c(1, 8)*(9, 3)c(2, 7)
*(9, 4)c(3, 6)*(9, 5)c(4, 5)
*(9, 6)c(5, 4)*(9, 7)c(6, 3)
*(9, 8)c(7, 2)*(9, 9)c(8, 1)
*(x, c(y, z))c(*(x, y), *(x, z))*(c(x, y), z)c(*(x, z), *(y, z))

Original Signature

Termination of terms over the following signature is verified: c, *, +, 3, 2, 1, 0, 7, 6, 5, 4, 9, 8

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

*#(x, c(y, z))*#(x, y)*#(x, c(y, z))*#(x, z)