YES

The TRS could be proven terminating. The proof took 1150 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (82ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (20ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4iUR (285ms).
 |    | – Problem 7 was processed with processor PolynomialOrderingProcessor (272ms).
 | – Problem 5 was processed with processor SubtermCriterion (0ms).
 | – Problem 6 was processed with processor SubtermCriterion (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

odd#(s(s(x)))odd#(x)*#(x, s(y))*#(x, y)
f#(x, s(y), z)*#(x, x)f#(x, s(y), z)f#(x, y, *(x, z))
f#(x, s(y), z)*#(x, z)half#(s(s(x)))half#(x)
pow#(x, y)f#(x, y, s(0))f#(x, s(y), z)if#(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))
f#(x, s(y), z)half#(s(y))f#(x, s(y), z)odd#(s(y))
-#(s(x), s(y))-#(x, y)f#(x, s(y), z)f#(*(x, x), half(s(y)), z)

Rewrite Rules

-(x, 0)x-(s(x), s(y))-(x, y)
*(x, 0)0*(x, s(y))+(*(x, y), x)
if(true, x, y)xif(false, x, y)y
odd(0)falseodd(s(0))true
odd(s(s(x)))odd(x)half(0)0
half(s(0))0half(s(s(x)))s(half(x))
if(true, x, y)trueif(false, x, y)false
pow(x, y)f(x, y, s(0))f(x, 0, z)z
f(x, s(y), z)if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Original Signature

Termination of terms over the following signature is verified: f, 0, pow, s, if, *, +, true, false, half, odd, -

Strategy


The following SCCs where found

odd#(s(s(x))) → odd#(x)

*#(x, s(y)) → *#(x, y)

half#(s(s(x))) → half#(x)

f#(x, s(y), z) → f#(x, y, *(x, z))f#(x, s(y), z) → f#(*(x, x), half(s(y)), z)

-#(s(x), s(y)) → -#(x, y)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

-#(s(x), s(y))-#(x, y)

Rewrite Rules

-(x, 0)x-(s(x), s(y))-(x, y)
*(x, 0)0*(x, s(y))+(*(x, y), x)
if(true, x, y)xif(false, x, y)y
odd(0)falseodd(s(0))true
odd(s(s(x)))odd(x)half(0)0
half(s(0))0half(s(s(x)))s(half(x))
if(true, x, y)trueif(false, x, y)false
pow(x, y)f(x, y, s(0))f(x, 0, z)z
f(x, s(y), z)if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Original Signature

Termination of terms over the following signature is verified: f, 0, pow, s, if, *, +, true, false, half, odd, -

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

-#(s(x), s(y))-#(x, y)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

odd#(s(s(x)))odd#(x)

Rewrite Rules

-(x, 0)x-(s(x), s(y))-(x, y)
*(x, 0)0*(x, s(y))+(*(x, y), x)
if(true, x, y)xif(false, x, y)y
odd(0)falseodd(s(0))true
odd(s(s(x)))odd(x)half(0)0
half(s(0))0half(s(s(x)))s(half(x))
if(true, x, y)trueif(false, x, y)false
pow(x, y)f(x, y, s(0))f(x, 0, z)z
f(x, s(y), z)if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Original Signature

Termination of terms over the following signature is verified: f, 0, pow, s, if, *, +, true, false, half, odd, -

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

odd#(s(s(x)))odd#(x)

Problem 4: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

f#(x, s(y), z)f#(x, y, *(x, z))f#(x, s(y), z)f#(*(x, x), half(s(y)), z)

Rewrite Rules

-(x, 0)x-(s(x), s(y))-(x, y)
*(x, 0)0*(x, s(y))+(*(x, y), x)
if(true, x, y)xif(false, x, y)y
odd(0)falseodd(s(0))true
odd(s(s(x)))odd(x)half(0)0
half(s(0))0half(s(s(x)))s(half(x))
if(true, x, y)trueif(false, x, y)false
pow(x, y)f(x, y, s(0))f(x, 0, z)z
f(x, s(y), z)if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Original Signature

Termination of terms over the following signature is verified: f, 0, pow, s, if, *, +, true, false, half, odd, -

Strategy


Polynomial Interpretation

Improved Usable rules

half(s(0))0half(0)0
half(s(s(x)))s(half(x))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

f#(x, s(y), z)f#(x, y, *(x, z))

Problem 7: PolynomialOrderingProcessor



Dependency Pair Problem

Dependency Pairs

f#(x, s(y), z)f#(*(x, x), half(s(y)), z)

Rewrite Rules

-(x, 0)x-(s(x), s(y))-(x, y)
*(x, 0)0*(x, s(y))+(*(x, y), x)
if(true, x, y)xif(false, x, y)y
odd(0)falseodd(s(0))true
odd(s(s(x)))odd(x)half(0)0
half(s(0))0half(s(s(x)))s(half(x))
if(true, x, y)trueif(false, x, y)false
pow(x, y)f(x, y, s(0))f(x, 0, z)z
f(x, s(y), z)if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Original Signature

Termination of terms over the following signature is verified: f, pow, 0, s, if, *, half, false, true, +, odd, -

Strategy


Polynomial Interpretation

Improved Usable rules

*(x, s(y))+(*(x, y), x)half(s(0))0
*(x, 0)0half(0)0
half(s(s(x)))s(half(x))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

f#(x, s(y), z)f#(*(x, x), half(s(y)), z)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

half#(s(s(x)))half#(x)

Rewrite Rules

-(x, 0)x-(s(x), s(y))-(x, y)
*(x, 0)0*(x, s(y))+(*(x, y), x)
if(true, x, y)xif(false, x, y)y
odd(0)falseodd(s(0))true
odd(s(s(x)))odd(x)half(0)0
half(s(0))0half(s(s(x)))s(half(x))
if(true, x, y)trueif(false, x, y)false
pow(x, y)f(x, y, s(0))f(x, 0, z)z
f(x, s(y), z)if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Original Signature

Termination of terms over the following signature is verified: f, 0, pow, s, if, *, +, true, false, half, odd, -

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

half#(s(s(x)))half#(x)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

*#(x, s(y))*#(x, y)

Rewrite Rules

-(x, 0)x-(s(x), s(y))-(x, y)
*(x, 0)0*(x, s(y))+(*(x, y), x)
if(true, x, y)xif(false, x, y)y
odd(0)falseodd(s(0))true
odd(s(s(x)))odd(x)half(0)0
half(s(0))0half(s(s(x)))s(half(x))
if(true, x, y)trueif(false, x, y)false
pow(x, y)f(x, y, s(0))f(x, 0, z)z
f(x, s(y), z)if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Original Signature

Termination of terms over the following signature is verified: f, 0, pow, s, if, *, +, true, false, half, odd, -

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

*#(x, s(y))*#(x, y)