TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60027 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (373ms).
 | – Problem 2 was processed with processor BackwardInstantiation (2ms).
 |    | – Problem 8 remains open; application of the following processors failed [ForwardInstantiation (2ms), Propagation (2ms), ForwardNarrowing (1ms), BackwardInstantiation (1ms), ForwardInstantiation (3ms), Propagation (2ms)].
 | – Problem 3 was processed with processor BackwardInstantiation (2ms).
 |    | – Problem 9 remains open; application of the following processors failed [ForwardInstantiation (1ms), Propagation (1ms), ForwardNarrowing (1ms), BackwardInstantiation (1ms), ForwardInstantiation (1ms), Propagation (2ms)].
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (2ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

u_3#(True, NzN, NzM)gcd#(d(NzN, NzM), NzM)u_31#(True, True, NzN, NzM)u_3#(gt(NzN, NzM), NzN, NzM)
gcd#(NzN, NzM)u_31#(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)

Rewrite Rules

p(s(N))N+(N, 0)N
+(s(N), s(M))s(s(+(N, M)))*(N, 0)0
*(s(N), s(M))s(+(N, +(M, *(N, M))))gt(0, M)False
gt(NzN, 0)u_4(is_NzNat(NzN))u_4(True)True
is_NzNat(0)Falseis_NzNat(s(N))True
gt(s(N), s(M))gt(N, M)lt(N, M)gt(M, N)
d(0, N)Nd(s(N), s(M))d(N, M)
quot(N, NzM)u_11(is_NzNat(NzM), N, NzM)u_11(True, N, NzM)u_1(gt(N, NzM), N, NzM)
u_1(True, N, NzM)s(quot(d(N, NzM), NzM))quot(NzM, NzM)u_01(is_NzNat(NzM))
u_01(True)s(0)quot(N, NzM)u_21(is_NzNat(NzM), NzM, N)
u_21(True, NzM, N)u_2(gt(NzM, N))u_2(True)0
gcd(0, N)0gcd(NzM, NzM)u_02(is_NzNat(NzM), NzM)
u_02(True, NzM)NzMgcd(NzN, NzM)u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
u_31(True, True, NzN, NzM)u_3(gt(NzN, NzM), NzN, NzM)u_3(True, NzN, NzM)gcd(d(NzN, NzM), NzM)

Original Signature

Termination of terms over the following signature is verified: u_31, is_NzNat, u_02, d, u_21, u_01, u_11, *, +, lt, False, u_1, 0, s, p, True, gt, u_4, quot, u_2, u_3, gcd




Open Dependency Pair Problem 3

Dependency Pairs

u_1#(True, N, NzM)quot#(d(N, NzM), NzM)quot#(N, NzM)u_11#(is_NzNat(NzM), N, NzM)
u_11#(True, N, NzM)u_1#(gt(N, NzM), N, NzM)

Rewrite Rules

p(s(N))N+(N, 0)N
+(s(N), s(M))s(s(+(N, M)))*(N, 0)0
*(s(N), s(M))s(+(N, +(M, *(N, M))))gt(0, M)False
gt(NzN, 0)u_4(is_NzNat(NzN))u_4(True)True
is_NzNat(0)Falseis_NzNat(s(N))True
gt(s(N), s(M))gt(N, M)lt(N, M)gt(M, N)
d(0, N)Nd(s(N), s(M))d(N, M)
quot(N, NzM)u_11(is_NzNat(NzM), N, NzM)u_11(True, N, NzM)u_1(gt(N, NzM), N, NzM)
u_1(True, N, NzM)s(quot(d(N, NzM), NzM))quot(NzM, NzM)u_01(is_NzNat(NzM))
u_01(True)s(0)quot(N, NzM)u_21(is_NzNat(NzM), NzM, N)
u_21(True, NzM, N)u_2(gt(NzM, N))u_2(True)0
gcd(0, N)0gcd(NzM, NzM)u_02(is_NzNat(NzM), NzM)
u_02(True, NzM)NzMgcd(NzN, NzM)u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
u_31(True, True, NzN, NzM)u_3(gt(NzN, NzM), NzN, NzM)u_3(True, NzN, NzM)gcd(d(NzN, NzM), NzM)

Original Signature

Termination of terms over the following signature is verified: u_31, is_NzNat, u_02, d, u_21, u_01, u_11, *, +, lt, False, u_1, 0, s, p, True, gt, u_4, quot, u_2, u_3, gcd


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

*#(s(N), s(M))+#(N, +(M, *(N, M)))+#(s(N), s(M))+#(N, M)
u_11#(True, N, NzM)gt#(N, NzM)u_3#(True, NzN, NzM)gcd#(d(NzN, NzM), NzM)
quot#(N, NzM)is_NzNat#(NzM)gcd#(NzN, NzM)is_NzNat#(NzM)
gcd#(NzM, NzM)is_NzNat#(NzM)d#(s(N), s(M))d#(N, M)
gt#(NzN, 0)is_NzNat#(NzN)quot#(NzM, NzM)is_NzNat#(NzM)
lt#(N, M)gt#(M, N)gt#(s(N), s(M))gt#(N, M)
quot#(N, NzM)u_11#(is_NzNat(NzM), N, NzM)quot#(NzM, NzM)u_01#(is_NzNat(NzM))
gcd#(NzN, NzM)u_31#(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)gcd#(NzM, NzM)u_02#(is_NzNat(NzM), NzM)
u_21#(True, NzM, N)gt#(NzM, N)u_21#(True, NzM, N)u_2#(gt(NzM, N))
u_3#(True, NzN, NzM)d#(NzN, NzM)gcd#(NzN, NzM)is_NzNat#(NzN)
u_31#(True, True, NzN, NzM)u_3#(gt(NzN, NzM), NzN, NzM)u_31#(True, True, NzN, NzM)gt#(NzN, NzM)
*#(s(N), s(M))*#(N, M)u_1#(True, N, NzM)d#(N, NzM)
quot#(N, NzM)u_21#(is_NzNat(NzM), NzM, N)u_1#(True, N, NzM)quot#(d(N, NzM), NzM)
*#(s(N), s(M))+#(M, *(N, M))gt#(NzN, 0)u_4#(is_NzNat(NzN))
u_11#(True, N, NzM)u_1#(gt(N, NzM), N, NzM)

Rewrite Rules

p(s(N))N+(N, 0)N
+(s(N), s(M))s(s(+(N, M)))*(N, 0)0
*(s(N), s(M))s(+(N, +(M, *(N, M))))gt(0, M)False
gt(NzN, 0)u_4(is_NzNat(NzN))u_4(True)True
is_NzNat(0)Falseis_NzNat(s(N))True
gt(s(N), s(M))gt(N, M)lt(N, M)gt(M, N)
d(0, N)Nd(s(N), s(M))d(N, M)
quot(N, NzM)u_11(is_NzNat(NzM), N, NzM)u_11(True, N, NzM)u_1(gt(N, NzM), N, NzM)
u_1(True, N, NzM)s(quot(d(N, NzM), NzM))quot(NzM, NzM)u_01(is_NzNat(NzM))
u_01(True)s(0)quot(N, NzM)u_21(is_NzNat(NzM), NzM, N)
u_21(True, NzM, N)u_2(gt(NzM, N))u_2(True)0
gcd(0, N)0gcd(NzM, NzM)u_02(is_NzNat(NzM), NzM)
u_02(True, NzM)NzMgcd(NzN, NzM)u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
u_31(True, True, NzN, NzM)u_3(gt(NzN, NzM), NzN, NzM)u_3(True, NzN, NzM)gcd(d(NzN, NzM), NzM)

Original Signature

Termination of terms over the following signature is verified: u_31, is_NzNat, u_02, d, u_21, u_01, u_11, *, +, lt, False, u_1, 0, s, p, True, gt, u_4, quot, u_2, gcd, u_3

Strategy


The following SCCs where found

*#(s(N), s(M)) → *#(N, M)

+#(s(N), s(M)) → +#(N, M)

u_3#(True, NzN, NzM) → gcd#(d(NzN, NzM), NzM)u_31#(True, True, NzN, NzM) → u_3#(gt(NzN, NzM), NzN, NzM)
gcd#(NzN, NzM) → u_31#(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)

u_1#(True, N, NzM) → quot#(d(N, NzM), NzM)quot#(N, NzM) → u_11#(is_NzNat(NzM), N, NzM)
u_11#(True, N, NzM) → u_1#(gt(N, NzM), N, NzM)

gt#(s(N), s(M)) → gt#(N, M)

d#(s(N), s(M)) → d#(N, M)

Problem 2: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

u_3#(True, NzN, NzM)gcd#(d(NzN, NzM), NzM)u_31#(True, True, NzN, NzM)u_3#(gt(NzN, NzM), NzN, NzM)
gcd#(NzN, NzM)u_31#(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)

Rewrite Rules

p(s(N))N+(N, 0)N
+(s(N), s(M))s(s(+(N, M)))*(N, 0)0
*(s(N), s(M))s(+(N, +(M, *(N, M))))gt(0, M)False
gt(NzN, 0)u_4(is_NzNat(NzN))u_4(True)True
is_NzNat(0)Falseis_NzNat(s(N))True
gt(s(N), s(M))gt(N, M)lt(N, M)gt(M, N)
d(0, N)Nd(s(N), s(M))d(N, M)
quot(N, NzM)u_11(is_NzNat(NzM), N, NzM)u_11(True, N, NzM)u_1(gt(N, NzM), N, NzM)
u_1(True, N, NzM)s(quot(d(N, NzM), NzM))quot(NzM, NzM)u_01(is_NzNat(NzM))
u_01(True)s(0)quot(N, NzM)u_21(is_NzNat(NzM), NzM, N)
u_21(True, NzM, N)u_2(gt(NzM, N))u_2(True)0
gcd(0, N)0gcd(NzM, NzM)u_02(is_NzNat(NzM), NzM)
u_02(True, NzM)NzMgcd(NzN, NzM)u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
u_31(True, True, NzN, NzM)u_3(gt(NzN, NzM), NzN, NzM)u_3(True, NzN, NzM)gcd(d(NzN, NzM), NzM)

Original Signature

Termination of terms over the following signature is verified: u_31, is_NzNat, u_02, d, u_21, u_01, u_11, *, +, lt, False, u_1, 0, s, p, True, gt, u_4, quot, u_2, gcd, u_3

Strategy


Instantiation

For all potential predecessors l → r of the rule gcd#(NzN, NzM) → u_31#(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM) on dependency pair chains it holds that: Thus, gcd#(NzN, NzM) → u_31#(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM) is replaced by instances determined through the above matching. These instances are:
gcd#(d(_NzN, _NzM), _NzM) → u_31#(is_NzNat(d(_NzN, _NzM)), is_NzNat(_NzM), d(_NzN, _NzM), _NzM)

Problem 3: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

u_1#(True, N, NzM)quot#(d(N, NzM), NzM)quot#(N, NzM)u_11#(is_NzNat(NzM), N, NzM)
u_11#(True, N, NzM)u_1#(gt(N, NzM), N, NzM)

Rewrite Rules

p(s(N))N+(N, 0)N
+(s(N), s(M))s(s(+(N, M)))*(N, 0)0
*(s(N), s(M))s(+(N, +(M, *(N, M))))gt(0, M)False
gt(NzN, 0)u_4(is_NzNat(NzN))u_4(True)True
is_NzNat(0)Falseis_NzNat(s(N))True
gt(s(N), s(M))gt(N, M)lt(N, M)gt(M, N)
d(0, N)Nd(s(N), s(M))d(N, M)
quot(N, NzM)u_11(is_NzNat(NzM), N, NzM)u_11(True, N, NzM)u_1(gt(N, NzM), N, NzM)
u_1(True, N, NzM)s(quot(d(N, NzM), NzM))quot(NzM, NzM)u_01(is_NzNat(NzM))
u_01(True)s(0)quot(N, NzM)u_21(is_NzNat(NzM), NzM, N)
u_21(True, NzM, N)u_2(gt(NzM, N))u_2(True)0
gcd(0, N)0gcd(NzM, NzM)u_02(is_NzNat(NzM), NzM)
u_02(True, NzM)NzMgcd(NzN, NzM)u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
u_31(True, True, NzN, NzM)u_3(gt(NzN, NzM), NzN, NzM)u_3(True, NzN, NzM)gcd(d(NzN, NzM), NzM)

Original Signature

Termination of terms over the following signature is verified: u_31, is_NzNat, u_02, d, u_21, u_01, u_11, *, +, lt, False, u_1, 0, s, p, True, gt, u_4, quot, u_2, gcd, u_3

Strategy


Instantiation

For all potential predecessors l → r of the rule quot#(N, NzM) → u_11#(is_NzNat(NzM), N, NzM) on dependency pair chains it holds that: Thus, quot#(N, NzM) → u_11#(is_NzNat(NzM), N, NzM) is replaced by instances determined through the above matching. These instances are:
quot#(d(_N, _NzM), _NzM) → u_11#(is_NzNat(_NzM), d(_N, _NzM), _NzM)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

*#(s(N), s(M))*#(N, M)

Rewrite Rules

p(s(N))N+(N, 0)N
+(s(N), s(M))s(s(+(N, M)))*(N, 0)0
*(s(N), s(M))s(+(N, +(M, *(N, M))))gt(0, M)False
gt(NzN, 0)u_4(is_NzNat(NzN))u_4(True)True
is_NzNat(0)Falseis_NzNat(s(N))True
gt(s(N), s(M))gt(N, M)lt(N, M)gt(M, N)
d(0, N)Nd(s(N), s(M))d(N, M)
quot(N, NzM)u_11(is_NzNat(NzM), N, NzM)u_11(True, N, NzM)u_1(gt(N, NzM), N, NzM)
u_1(True, N, NzM)s(quot(d(N, NzM), NzM))quot(NzM, NzM)u_01(is_NzNat(NzM))
u_01(True)s(0)quot(N, NzM)u_21(is_NzNat(NzM), NzM, N)
u_21(True, NzM, N)u_2(gt(NzM, N))u_2(True)0
gcd(0, N)0gcd(NzM, NzM)u_02(is_NzNat(NzM), NzM)
u_02(True, NzM)NzMgcd(NzN, NzM)u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
u_31(True, True, NzN, NzM)u_3(gt(NzN, NzM), NzN, NzM)u_3(True, NzN, NzM)gcd(d(NzN, NzM), NzM)

Original Signature

Termination of terms over the following signature is verified: u_31, is_NzNat, u_02, d, u_21, u_01, u_11, *, +, lt, False, u_1, 0, s, p, True, gt, u_4, quot, u_2, gcd, u_3

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

*#(s(N), s(M))*#(N, M)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

+#(s(N), s(M))+#(N, M)

Rewrite Rules

p(s(N))N+(N, 0)N
+(s(N), s(M))s(s(+(N, M)))*(N, 0)0
*(s(N), s(M))s(+(N, +(M, *(N, M))))gt(0, M)False
gt(NzN, 0)u_4(is_NzNat(NzN))u_4(True)True
is_NzNat(0)Falseis_NzNat(s(N))True
gt(s(N), s(M))gt(N, M)lt(N, M)gt(M, N)
d(0, N)Nd(s(N), s(M))d(N, M)
quot(N, NzM)u_11(is_NzNat(NzM), N, NzM)u_11(True, N, NzM)u_1(gt(N, NzM), N, NzM)
u_1(True, N, NzM)s(quot(d(N, NzM), NzM))quot(NzM, NzM)u_01(is_NzNat(NzM))
u_01(True)s(0)quot(N, NzM)u_21(is_NzNat(NzM), NzM, N)
u_21(True, NzM, N)u_2(gt(NzM, N))u_2(True)0
gcd(0, N)0gcd(NzM, NzM)u_02(is_NzNat(NzM), NzM)
u_02(True, NzM)NzMgcd(NzN, NzM)u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
u_31(True, True, NzN, NzM)u_3(gt(NzN, NzM), NzN, NzM)u_3(True, NzN, NzM)gcd(d(NzN, NzM), NzM)

Original Signature

Termination of terms over the following signature is verified: u_31, is_NzNat, u_02, d, u_21, u_01, u_11, *, +, lt, False, u_1, 0, s, p, True, gt, u_4, quot, u_2, gcd, u_3

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

+#(s(N), s(M))+#(N, M)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

d#(s(N), s(M))d#(N, M)

Rewrite Rules

p(s(N))N+(N, 0)N
+(s(N), s(M))s(s(+(N, M)))*(N, 0)0
*(s(N), s(M))s(+(N, +(M, *(N, M))))gt(0, M)False
gt(NzN, 0)u_4(is_NzNat(NzN))u_4(True)True
is_NzNat(0)Falseis_NzNat(s(N))True
gt(s(N), s(M))gt(N, M)lt(N, M)gt(M, N)
d(0, N)Nd(s(N), s(M))d(N, M)
quot(N, NzM)u_11(is_NzNat(NzM), N, NzM)u_11(True, N, NzM)u_1(gt(N, NzM), N, NzM)
u_1(True, N, NzM)s(quot(d(N, NzM), NzM))quot(NzM, NzM)u_01(is_NzNat(NzM))
u_01(True)s(0)quot(N, NzM)u_21(is_NzNat(NzM), NzM, N)
u_21(True, NzM, N)u_2(gt(NzM, N))u_2(True)0
gcd(0, N)0gcd(NzM, NzM)u_02(is_NzNat(NzM), NzM)
u_02(True, NzM)NzMgcd(NzN, NzM)u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
u_31(True, True, NzN, NzM)u_3(gt(NzN, NzM), NzN, NzM)u_3(True, NzN, NzM)gcd(d(NzN, NzM), NzM)

Original Signature

Termination of terms over the following signature is verified: u_31, is_NzNat, u_02, d, u_21, u_01, u_11, *, +, lt, False, u_1, 0, s, p, True, gt, u_4, quot, u_2, gcd, u_3

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

d#(s(N), s(M))d#(N, M)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

gt#(s(N), s(M))gt#(N, M)

Rewrite Rules

p(s(N))N+(N, 0)N
+(s(N), s(M))s(s(+(N, M)))*(N, 0)0
*(s(N), s(M))s(+(N, +(M, *(N, M))))gt(0, M)False
gt(NzN, 0)u_4(is_NzNat(NzN))u_4(True)True
is_NzNat(0)Falseis_NzNat(s(N))True
gt(s(N), s(M))gt(N, M)lt(N, M)gt(M, N)
d(0, N)Nd(s(N), s(M))d(N, M)
quot(N, NzM)u_11(is_NzNat(NzM), N, NzM)u_11(True, N, NzM)u_1(gt(N, NzM), N, NzM)
u_1(True, N, NzM)s(quot(d(N, NzM), NzM))quot(NzM, NzM)u_01(is_NzNat(NzM))
u_01(True)s(0)quot(N, NzM)u_21(is_NzNat(NzM), NzM, N)
u_21(True, NzM, N)u_2(gt(NzM, N))u_2(True)0
gcd(0, N)0gcd(NzM, NzM)u_02(is_NzNat(NzM), NzM)
u_02(True, NzM)NzMgcd(NzN, NzM)u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
u_31(True, True, NzN, NzM)u_3(gt(NzN, NzM), NzN, NzM)u_3(True, NzN, NzM)gcd(d(NzN, NzM), NzM)

Original Signature

Termination of terms over the following signature is verified: u_31, is_NzNat, u_02, d, u_21, u_01, u_11, *, +, lt, False, u_1, 0, s, p, True, gt, u_4, quot, u_2, gcd, u_3

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

gt#(s(N), s(M))gt#(N, M)