YES

The TRS could be proven terminating. The proof took 6181 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (429ms).
 | – Problem 2 was processed with processor SubtermCriterion (50ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4iUR (1406ms).
 |    | – Problem 5 was processed with processor PolynomialLinearRange4iUR (1176ms).
 |    |    | – Problem 6 was processed with processor DependencyGraph (58ms).
 |    |    |    | – Problem 7 was processed with processor PolynomialLinearRange4iUR (1359ms).
 |    |    |    |    | – Problem 8 was processed with processor DependencyGraph (9ms).
 |    |    |    |    |    | – Problem 9 was processed with processor PolynomialLinearRange4iUR (331ms).
 |    |    |    |    |    |    | – Problem 11 was processed with processor PolynomialLinearRange4iUR (372ms).
 |    |    |    |    |    |    |    | – Problem 12 was processed with processor PolynomialLinearRange4iUR (347ms).
 |    |    |    |    |    |    |    |    | – Problem 13 was processed with processor PolynomialLinearRange4iUR (16ms).
 |    |    |    |    |    |    |    |    |    | – Problem 14 was processed with processor PolynomialLinearRange4iUR (13ms).
 |    |    |    |    |    | – Problem 10 was processed with processor PolynomialLinearRange4iUR (311ms).
 | – Problem 4 was processed with processor SubtermCriterion (32ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_app(m, n), s)Term_sub#(m, s)Term_sub#(Term_inl(m), s)Term_sub#(m, s)
Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)Term_sub#(Case(m, xi, n), s)Frozen#(m, Sum_sub(xi, s), n, s)
Frozen#(m, Sum_constant(Right), n, s)Term_sub#(n, s)Term_sub#(Term_inr(m), s)Term_sub#(m, s)
Concat#(Concat(s, t), u)Concat#(s, Concat(t, u))Term_sub#(Term_sub(m, s), t)Term_sub#(m, Concat(s, t))
Frozen#(m, Sum_term_var(xi), n, s)Term_sub#(m, s)Sum_sub#(xi, Cons_usual(y, m, s))Sum_sub#(xi, s)
Frozen#(m, Sum_term_var(xi), n, s)Term_sub#(n, s)Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)
Concat#(Cons_sum(xi, k, s), t)Concat#(s, t)Term_sub#(Case(m, xi, n), s)Sum_sub#(xi, s)
Concat#(Cons_usual(x, m, s), t)Term_sub#(m, t)Term_sub#(Term_var(x), Cons_usual(y, m, s))Term_sub#(Term_var(x), s)
Term_sub#(Term_var(x), Cons_sum(xi, k, s))Term_sub#(Term_var(x), s)Concat#(Concat(s, t), u)Concat#(t, u)
Sum_sub#(xi, Cons_sum(psi, k, s))Sum_sub#(xi, s)Frozen#(m, Sum_constant(Left), n, s)Term_sub#(m, s)
Concat#(Cons_usual(x, m, s), t)Concat#(s, t)Term_sub#(Term_sub(m, s), t)Concat#(s, t)
Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


The following SCCs where found

Term_sub#(Term_var(x), Cons_usual(y, m, s)) → Term_sub#(Term_var(x), s)Term_sub#(Term_var(x), Cons_sum(xi, k, s)) → Term_sub#(Term_var(x), s)

Term_sub#(Term_app(m, n), s) → Term_sub#(m, s)Term_sub#(Term_inl(m), s) → Term_sub#(m, s)
Term_sub#(Term_pair(m, n), s) → Term_sub#(m, s)Term_sub#(Case(m, xi, n), s) → Frozen#(m, Sum_sub(xi, s), n, s)
Frozen#(m, Sum_constant(Right), n, s) → Term_sub#(n, s)Term_sub#(Term_inr(m), s) → Term_sub#(m, s)
Term_sub#(Term_sub(m, s), t) → Term_sub#(m, Concat(s, t))Concat#(Concat(s, t), u) → Concat#(s, Concat(t, u))
Frozen#(m, Sum_term_var(xi), n, s) → Term_sub#(m, s)Term_sub#(Term_pair(m, n), s) → Term_sub#(n, s)
Frozen#(m, Sum_term_var(xi), n, s) → Term_sub#(n, s)Concat#(Cons_sum(xi, k, s), t) → Concat#(s, t)
Concat#(Cons_usual(x, m, s), t) → Term_sub#(m, t)Concat#(Concat(s, t), u) → Concat#(t, u)
Concat#(Cons_usual(x, m, s), t) → Concat#(s, t)Frozen#(m, Sum_constant(Left), n, s) → Term_sub#(m, s)
Term_sub#(Term_sub(m, s), t) → Concat#(s, t)Term_sub#(Term_app(m, n), s) → Term_sub#(n, s)

Sum_sub#(xi, Cons_usual(y, m, s)) → Sum_sub#(xi, s)Sum_sub#(xi, Cons_sum(psi, k, s)) → Sum_sub#(xi, s)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_var(x), Cons_usual(y, m, s))Term_sub#(Term_var(x), s)Term_sub#(Term_var(x), Cons_sum(xi, k, s))Term_sub#(Term_var(x), s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

Term_sub#(Term_var(x), Cons_usual(y, m, s))Term_sub#(Term_var(x), s)Term_sub#(Term_var(x), Cons_sum(xi, k, s))Term_sub#(Term_var(x), s)

Problem 3: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_app(m, n), s)Term_sub#(m, s)Term_sub#(Term_inl(m), s)Term_sub#(m, s)
Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)Term_sub#(Case(m, xi, n), s)Frozen#(m, Sum_sub(xi, s), n, s)
Frozen#(m, Sum_constant(Right), n, s)Term_sub#(n, s)Term_sub#(Term_inr(m), s)Term_sub#(m, s)
Concat#(Concat(s, t), u)Concat#(s, Concat(t, u))Term_sub#(Term_sub(m, s), t)Term_sub#(m, Concat(s, t))
Frozen#(m, Sum_term_var(xi), n, s)Term_sub#(m, s)Frozen#(m, Sum_term_var(xi), n, s)Term_sub#(n, s)
Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)Concat#(Cons_sum(xi, k, s), t)Concat#(s, t)
Concat#(Cons_usual(x, m, s), t)Term_sub#(m, t)Concat#(Concat(s, t), u)Concat#(t, u)
Concat#(Cons_usual(x, m, s), t)Concat#(s, t)Frozen#(m, Sum_constant(Left), n, s)Term_sub#(m, s)
Term_sub#(Term_sub(m, s), t)Concat#(s, t)Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

Concat#(Cons_sum(xi, k, s), t)Concat#(s, t)

Problem 5: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_app(m, n), s)Term_sub#(m, s)Term_sub#(Term_inl(m), s)Term_sub#(m, s)
Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)Term_sub#(Case(m, xi, n), s)Frozen#(m, Sum_sub(xi, s), n, s)
Frozen#(m, Sum_constant(Right), n, s)Term_sub#(n, s)Term_sub#(Term_inr(m), s)Term_sub#(m, s)
Concat#(Concat(s, t), u)Concat#(s, Concat(t, u))Term_sub#(Term_sub(m, s), t)Term_sub#(m, Concat(s, t))
Frozen#(m, Sum_term_var(xi), n, s)Term_sub#(m, s)Frozen#(m, Sum_term_var(xi), n, s)Term_sub#(n, s)
Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)Concat#(Cons_usual(x, m, s), t)Term_sub#(m, t)
Concat#(Concat(s, t), u)Concat#(t, u)Frozen#(m, Sum_constant(Left), n, s)Term_sub#(m, s)
Concat#(Cons_usual(x, m, s), t)Concat#(s, t)Term_sub#(Term_sub(m, s), t)Concat#(s, t)
Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

Term_sub#(Case(m, xi, n), s)Frozen#(m, Sum_sub(xi, s), n, s)

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_app(m, n), s)Term_sub#(m, s)Term_sub#(Term_inl(m), s)Term_sub#(m, s)
Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)Frozen#(m, Sum_constant(Right), n, s)Term_sub#(n, s)
Term_sub#(Term_inr(m), s)Term_sub#(m, s)Concat#(Concat(s, t), u)Concat#(s, Concat(t, u))
Term_sub#(Term_sub(m, s), t)Term_sub#(m, Concat(s, t))Frozen#(m, Sum_term_var(xi), n, s)Term_sub#(m, s)
Frozen#(m, Sum_term_var(xi), n, s)Term_sub#(n, s)Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)
Concat#(Cons_usual(x, m, s), t)Term_sub#(m, t)Concat#(Concat(s, t), u)Concat#(t, u)
Concat#(Cons_usual(x, m, s), t)Concat#(s, t)Frozen#(m, Sum_constant(Left), n, s)Term_sub#(m, s)
Term_sub#(Term_sub(m, s), t)Concat#(s, t)Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


The following SCCs where found

Term_sub#(Term_pair(m, n), s) → Term_sub#(n, s)Term_sub#(Term_app(m, n), s) → Term_sub#(m, s)
Term_sub#(Term_inl(m), s) → Term_sub#(m, s)Term_sub#(Term_pair(m, n), s) → Term_sub#(m, s)
Concat#(Cons_usual(x, m, s), t) → Term_sub#(m, t)Term_sub#(Term_inr(m), s) → Term_sub#(m, s)
Concat#(Concat(s, t), u) → Concat#(t, u)Term_sub#(Term_sub(m, s), t) → Term_sub#(m, Concat(s, t))
Concat#(Concat(s, t), u) → Concat#(s, Concat(t, u))Concat#(Cons_usual(x, m, s), t) → Concat#(s, t)
Term_sub#(Term_sub(m, s), t) → Concat#(s, t)Term_sub#(Term_app(m, n), s) → Term_sub#(n, s)

Problem 7: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)Term_sub#(Term_app(m, n), s)Term_sub#(m, s)
Term_sub#(Term_inl(m), s)Term_sub#(m, s)Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)
Concat#(Cons_usual(x, m, s), t)Term_sub#(m, t)Term_sub#(Term_inr(m), s)Term_sub#(m, s)
Concat#(Concat(s, t), u)Concat#(t, u)Term_sub#(Term_sub(m, s), t)Term_sub#(m, Concat(s, t))
Concat#(Concat(s, t), u)Concat#(s, Concat(t, u))Concat#(Cons_usual(x, m, s), t)Concat#(s, t)
Term_sub#(Term_sub(m, s), t)Concat#(s, t)Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

Concat#(Cons_usual(x, m, s), t)Term_sub#(m, t)Concat#(Cons_usual(x, m, s), t)Concat#(s, t)

Problem 8: DependencyGraph



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_app(m, n), s)Term_sub#(m, s)Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)
Term_sub#(Term_inl(m), s)Term_sub#(m, s)Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)
Term_sub#(Term_inr(m), s)Term_sub#(m, s)Concat#(Concat(s, t), u)Concat#(t, u)
Concat#(Concat(s, t), u)Concat#(s, Concat(t, u))Term_sub#(Term_sub(m, s), t)Term_sub#(m, Concat(s, t))
Term_sub#(Term_sub(m, s), t)Concat#(s, t)Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


The following SCCs where found

Concat#(Concat(s, t), u) → Concat#(t, u)Concat#(Concat(s, t), u) → Concat#(s, Concat(t, u))

Term_sub#(Term_app(m, n), s) → Term_sub#(m, s)Term_sub#(Term_pair(m, n), s) → Term_sub#(n, s)
Term_sub#(Term_inl(m), s) → Term_sub#(m, s)Term_sub#(Term_pair(m, n), s) → Term_sub#(m, s)
Term_sub#(Term_inr(m), s) → Term_sub#(m, s)Term_sub#(Term_sub(m, s), t) → Term_sub#(m, Concat(s, t))
Term_sub#(Term_app(m, n), s) → Term_sub#(n, s)

Problem 9: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_app(m, n), s)Term_sub#(m, s)Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)
Term_sub#(Term_inl(m), s)Term_sub#(m, s)Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)
Term_sub#(Term_inr(m), s)Term_sub#(m, s)Term_sub#(Term_sub(m, s), t)Term_sub#(m, Concat(s, t))
Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

Term_sub#(Term_inl(m), s)Term_sub#(m, s)

Problem 11: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)Term_sub#(Term_app(m, n), s)Term_sub#(m, s)
Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)Term_sub#(Term_inr(m), s)Term_sub#(m, s)
Term_sub#(Term_sub(m, s), t)Term_sub#(m, Concat(s, t))Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

Term_sub#(Term_inr(m), s)Term_sub#(m, s)

Problem 12: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_app(m, n), s)Term_sub#(m, s)Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)
Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)Term_sub#(Term_sub(m, s), t)Term_sub#(m, Concat(s, t))
Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

Term_sub#(Term_sub(m, s), t)Term_sub#(m, Concat(s, t))

Problem 13: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)Term_sub#(Term_app(m, n), s)Term_sub#(m, s)
Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

Term_sub#(Term_pair(m, n), s)Term_sub#(n, s)Term_sub#(Term_pair(m, n), s)Term_sub#(m, s)

Problem 14: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

Term_sub#(Term_app(m, n), s)Term_sub#(m, s)Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

Term_sub#(Term_app(m, n), s)Term_sub#(m, s)Term_sub#(Term_app(m, n), s)Term_sub#(n, s)

Problem 10: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

Concat#(Concat(s, t), u)Concat#(t, u)Concat#(Concat(s, t), u)Concat#(s, Concat(t, u))

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

Concat#(Concat(s, t), u)Concat#(t, u)Concat#(Concat(s, t), u)Concat#(s, Concat(t, u))

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

Sum_sub#(xi, Cons_usual(y, m, s))Sum_sub#(xi, s)Sum_sub#(xi, Cons_sum(psi, k, s))Sum_sub#(xi, s)

Rewrite Rules

Term_sub(Case(m, xi, n), s)Frozen(m, Sum_sub(xi, s), n, s)Frozen(m, Sum_constant(Left), n, s)Term_sub(m, s)
Frozen(m, Sum_constant(Right), n, s)Term_sub(n, s)Frozen(m, Sum_term_var(xi), n, s)Case(Term_sub(m, s), xi, Term_sub(n, s))
Term_sub(Term_app(m, n), s)Term_app(Term_sub(m, s), Term_sub(n, s))Term_sub(Term_pair(m, n), s)Term_pair(Term_sub(m, s), Term_sub(n, s))
Term_sub(Term_inl(m), s)Term_inl(Term_sub(m, s))Term_sub(Term_inr(m), s)Term_inr(Term_sub(m, s))
Term_sub(Term_var(x), Id)Term_var(x)Term_sub(Term_var(x), Cons_usual(y, m, s))m
Term_sub(Term_var(x), Cons_usual(y, m, s))Term_sub(Term_var(x), s)Term_sub(Term_var(x), Cons_sum(xi, k, s))Term_sub(Term_var(x), s)
Term_sub(Term_sub(m, s), t)Term_sub(m, Concat(s, t))Sum_sub(xi, Id)Sum_term_var(xi)
Sum_sub(xi, Cons_sum(psi, k, s))Sum_constant(k)Sum_sub(xi, Cons_sum(psi, k, s))Sum_sub(xi, s)
Sum_sub(xi, Cons_usual(y, m, s))Sum_sub(xi, s)Concat(Concat(s, t), u)Concat(s, Concat(t, u))
Concat(Cons_usual(x, m, s), t)Cons_usual(x, Term_sub(m, t), Concat(s, t))Concat(Cons_sum(xi, k, s), t)Cons_sum(xi, k, Concat(s, t))
Concat(Id, s)s

Original Signature

Termination of terms over the following signature is verified: Right, Term_app, Term_sub, Concat, Sum_sub, Cons_sum, Term_var, Left, Frozen, Sum_term_var, Sum_constant, Term_inl, Cons_usual, Case, Id, Term_inr, Term_pair

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

Sum_sub#(xi, Cons_usual(y, m, s))Sum_sub#(xi, s)Sum_sub#(xi, Cons_sum(psi, k, s))Sum_sub#(xi, s)