YES
The TRS could be proven terminating. The proof took 238 ms.
Problem 1 was processed with processor DependencyGraph (63ms). | Problem 2 was processed with processor SubtermCriterion (11ms).
or#(x, y) | → | xor#(x, y) | impl#(x, y) | → | xor#(and(x, y), xor(x, T)) | |
and#(xor(x, y), z) | → | xor#(and(x, z), and(y, z)) | or#(x, y) | → | and#(x, y) | |
neg#(x) | → | xor#(x, T) | and#(xor(x, y), z) | → | and#(y, z) | |
equiv#(x, y) | → | xor#(x, xor(y, T)) | impl#(x, y) | → | xor#(x, T) | |
and#(xor(x, y), z) | → | and#(x, z) | impl#(x, y) | → | and#(x, y) | |
or#(x, y) | → | xor#(and(x, y), xor(x, y)) | equiv#(x, y) | → | xor#(y, T) |
xor(x, F) | → | x | xor(x, neg(x)) | → | F | |
and(x, T) | → | x | and(x, F) | → | F | |
and(x, x) | → | x | and(xor(x, y), z) | → | xor(and(x, z), and(y, z)) | |
xor(x, x) | → | F | impl(x, y) | → | xor(and(x, y), xor(x, T)) | |
or(x, y) | → | xor(and(x, y), xor(x, y)) | equiv(x, y) | → | xor(x, xor(y, T)) | |
neg(x) | → | xor(x, T) |
Termination of terms over the following signature is verified: neg, T, xor, F, impl, or, equiv, and
and#(xor(x, y), z) → and#(y, z) | and#(xor(x, y), z) → and#(x, z) |
and#(xor(x, y), z) | → | and#(y, z) | and#(xor(x, y), z) | → | and#(x, z) |
xor(x, F) | → | x | xor(x, neg(x)) | → | F | |
and(x, T) | → | x | and(x, F) | → | F | |
and(x, x) | → | x | and(xor(x, y), z) | → | xor(and(x, z), and(y, z)) | |
xor(x, x) | → | F | impl(x, y) | → | xor(and(x, y), xor(x, T)) | |
or(x, y) | → | xor(and(x, y), xor(x, y)) | equiv(x, y) | → | xor(x, xor(y, T)) | |
neg(x) | → | xor(x, T) |
Termination of terms over the following signature is verified: neg, T, xor, F, impl, or, equiv, and
The following projection was used:
Thus, the following dependency pairs are removed:
and#(xor(x, y), z) | → | and#(y, z) | and#(xor(x, y), z) | → | and#(x, z) |