TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (80ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (514ms), DependencyGraph (3ms), PolynomialLinearRange8NegiUR (4991ms), DependencyGraph (45ms), ReductionPairSAT (541ms), DependencyGraph (3ms), SizeChangePrinciple (152ms), ForwardNarrowing (1ms), BackwardInstantiation (1ms), ForwardInstantiation (2ms), Propagation (1ms)].

The following open problems remain:



Open Dependency Pair Problem 4

Dependency Pairs

cond2#(true, x)cond1#(neq(x, 0), div2(x))cond1#(true, x)cond2#(even(x), x)
cond2#(false, x)cond1#(neq(x, 0), p(x))

Rewrite Rules

cond1(true, x)cond2(even(x), x)cond2(true, x)cond1(neq(x, 0), div2(x))
cond2(false, x)cond1(neq(x, 0), p(x))neq(0, 0)false
neq(0, s(x))trueneq(s(x), 0)true
neq(s(x), s(y))neq(x, y)even(0)true
even(s(0))falseeven(s(s(x)))even(x)
div2(0)0div2(s(0))0
div2(s(s(x)))s(div2(x))p(0)0
p(s(x))x

Original Signature

Termination of terms over the following signature is verified: cond2, 0, s, p, false, true, even, neq, y, div2, cond1


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

cond2#(true, x)div2#(x)cond2#(true, x)cond1#(neq(x, 0), div2(x))
cond1#(true, x)cond2#(even(x), x)cond2#(true, x)neq#(x, 0)
even#(s(s(x)))even#(x)cond2#(false, x)neq#(x, 0)
cond2#(false, x)p#(x)cond1#(true, x)even#(x)
cond2#(false, x)cond1#(neq(x, 0), p(x))neq#(s(x), s(y))neq#(x, y)
div2#(s(s(x)))div2#(x)

Rewrite Rules

cond1(true, x)cond2(even(x), x)cond2(true, x)cond1(neq(x, 0), div2(x))
cond2(false, x)cond1(neq(x, 0), p(x))neq(0, 0)false
neq(0, s(x))trueneq(s(x), 0)true
neq(s(x), s(y))neq(x, y)even(0)true
even(s(0))falseeven(s(s(x)))even(x)
div2(0)0div2(s(0))0
div2(s(s(x)))s(div2(x))p(0)0
p(s(x))x

Original Signature

Termination of terms over the following signature is verified: cond2, 0, s, p, true, false, even, neq, cond1, div2, y

Strategy


The following SCCs where found

even#(s(s(x))) → even#(x)

cond2#(true, x) → cond1#(neq(x, 0), div2(x))cond1#(true, x) → cond2#(even(x), x)
cond2#(false, x) → cond1#(neq(x, 0), p(x))

div2#(s(s(x))) → div2#(x)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

even#(s(s(x)))even#(x)

Rewrite Rules

cond1(true, x)cond2(even(x), x)cond2(true, x)cond1(neq(x, 0), div2(x))
cond2(false, x)cond1(neq(x, 0), p(x))neq(0, 0)false
neq(0, s(x))trueneq(s(x), 0)true
neq(s(x), s(y))neq(x, y)even(0)true
even(s(0))falseeven(s(s(x)))even(x)
div2(0)0div2(s(0))0
div2(s(s(x)))s(div2(x))p(0)0
p(s(x))x

Original Signature

Termination of terms over the following signature is verified: cond2, 0, s, p, true, false, even, neq, cond1, div2, y

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

even#(s(s(x)))even#(x)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

div2#(s(s(x)))div2#(x)

Rewrite Rules

cond1(true, x)cond2(even(x), x)cond2(true, x)cond1(neq(x, 0), div2(x))
cond2(false, x)cond1(neq(x, 0), p(x))neq(0, 0)false
neq(0, s(x))trueneq(s(x), 0)true
neq(s(x), s(y))neq(x, y)even(0)true
even(s(0))falseeven(s(s(x)))even(x)
div2(0)0div2(s(0))0
div2(s(s(x)))s(div2(x))p(0)0
p(s(x))x

Original Signature

Termination of terms over the following signature is verified: cond2, 0, s, p, true, false, even, neq, cond1, div2, y

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

div2#(s(s(x)))div2#(x)