YES

The TRS could be proven terminating. The proof took 38 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (8ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 4 was processed with processor DependencyGraph (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

intlist#(cons(x, y))intlist#(y)int#(s(x), s(y))int#(x, y)
int#(0, s(y))int#(s(0), s(y))int#(s(x), s(y))intlist#(int(x, y))

Rewrite Rules

intlist(nil)nilint(s(x), 0)nil
int(x, x)cons(x, nil)intlist(cons(x, y))cons(s(x), intlist(y))
int(s(x), s(y))intlist(int(x, y))int(0, s(y))cons(0, int(s(0), s(y)))
intlist(cons(x, nil))cons(s(x), nil)

Original Signature

Termination of terms over the following signature is verified: 0, s, int, intlist, nil, cons

Strategy


The following SCCs where found

intlist#(cons(x, y)) → intlist#(y)

int#(s(x), s(y)) → int#(x, y)int#(0, s(y)) → int#(s(0), s(y))

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

intlist#(cons(x, y))intlist#(y)

Rewrite Rules

intlist(nil)nilint(s(x), 0)nil
int(x, x)cons(x, nil)intlist(cons(x, y))cons(s(x), intlist(y))
int(s(x), s(y))intlist(int(x, y))int(0, s(y))cons(0, int(s(0), s(y)))
intlist(cons(x, nil))cons(s(x), nil)

Original Signature

Termination of terms over the following signature is verified: 0, s, int, intlist, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

intlist#(cons(x, y))intlist#(y)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

int#(s(x), s(y))int#(x, y)int#(0, s(y))int#(s(0), s(y))

Rewrite Rules

intlist(nil)nilint(s(x), 0)nil
int(x, x)cons(x, nil)intlist(cons(x, y))cons(s(x), intlist(y))
int(s(x), s(y))intlist(int(x, y))int(0, s(y))cons(0, int(s(0), s(y)))
intlist(cons(x, nil))cons(s(x), nil)

Original Signature

Termination of terms over the following signature is verified: 0, s, int, intlist, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

int#(s(x), s(y))int#(x, y)

Problem 4: DependencyGraph



Dependency Pair Problem

Dependency Pairs

int#(0, s(y))int#(s(0), s(y))

Rewrite Rules

intlist(nil)nilint(s(x), 0)nil
int(x, x)cons(x, nil)intlist(cons(x, y))cons(s(x), intlist(y))
int(s(x), s(y))intlist(int(x, y))int(0, s(y))cons(0, int(s(0), s(y)))
intlist(cons(x, nil))cons(s(x), nil)

Original Signature

Termination of terms over the following signature is verified: 0, s, int, intlist, cons, nil

Strategy


There are no SCCs!