TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (293ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor SubtermCriterion (0ms).
 | – Problem 6 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (14ms), PolynomialLinearRange4iUR (6509ms), DependencyGraph (9ms), PolynomialLinearRange8NegiUR (30000ms), DependencyGraph (timeout), ReductionPairSAT (6363ms), DependencyGraph (9ms), SizeChangePrinciple (timeout)].
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 | – Problem 8 was processed with processor SubtermCriterion (2ms).

The following open problems remain:



Open Dependency Pair Problem 6

Dependency Pairs

if1#(store, m, false)if3#(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))if2#(store, m, false)process#(app(map_f(self, nil), sndsplit(m, store)), m)
if1#(store, m, true)if2#(store, m, empty(fstsplit(m, store)))process#(store, m)if1#(store, m, leq(m, length(store)))
if3#(store, m, false)process#(sndsplit(m, app(map_f(self, nil), store)), m)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)if1(store, m, leq(m, length(store)))
if1(store, m, true)if2(store, m, empty(fstsplit(m, store)))if1(store, m, false)if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false)process(app(map_f(self, nil), sndsplit(m, store)), m)if3(store, m, false)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, if3, true, self, if1, if2, process, fstsplit, 0, s, sndsplit, empty, length, false, nil, cons


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

process#(store, m)leq#(m, length(store))if2#(store, m, false)map_f#(self, nil)
leq#(s(n), s(m))leq#(n, m)if3#(store, m, false)app#(map_f(self, nil), store)
if3#(store, m, false)sndsplit#(m, app(map_f(self, nil), store))if1#(store, m, true)fstsplit#(m, store)
length#(cons(h, t))length#(t)if3#(store, m, false)map_f#(self, nil)
process#(store, m)if1#(store, m, leq(m, length(store)))if3#(store, m, false)process#(sndsplit(m, app(map_f(self, nil), store)), m)
if1#(store, m, false)empty#(fstsplit(m, app(map_f(self, nil), store)))if1#(store, m, false)if3#(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if1#(store, m, false)app#(map_f(self, nil), store)process#(store, m)length#(store)
fstsplit#(s(n), cons(h, t))fstsplit#(n, t)if1#(store, m, false)fstsplit#(m, app(map_f(self, nil), store))
map_f#(pid, cons(h, t))app#(f(pid, h), map_f(pid, t))if2#(store, m, false)sndsplit#(m, store)
if1#(store, m, true)empty#(fstsplit(m, store))if2#(store, m, false)process#(app(map_f(self, nil), sndsplit(m, store)), m)
if1#(store, m, true)if2#(store, m, empty(fstsplit(m, store)))app#(cons(h, t), x)app#(t, x)
if2#(store, m, false)app#(map_f(self, nil), sndsplit(m, store))sndsplit#(s(n), cons(h, t))sndsplit#(n, t)
if1#(store, m, false)map_f#(self, nil)map_f#(pid, cons(h, t))map_f#(pid, t)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)if1(store, m, leq(m, length(store)))
if1(store, m, true)if2(store, m, empty(fstsplit(m, store)))if1(store, m, false)if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false)process(app(map_f(self, nil), sndsplit(m, store)), m)if3(store, m, false)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, if3, true, self, if1, if2, process, fstsplit, 0, s, sndsplit, length, empty, false, cons, nil

Strategy


The following SCCs where found

length#(cons(h, t)) → length#(t)

fstsplit#(s(n), cons(h, t)) → fstsplit#(n, t)

app#(cons(h, t), x) → app#(t, x)

leq#(s(n), s(m)) → leq#(n, m)

if1#(store, m, false) → if3#(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))if2#(store, m, false) → process#(app(map_f(self, nil), sndsplit(m, store)), m)
if1#(store, m, true) → if2#(store, m, empty(fstsplit(m, store)))process#(store, m) → if1#(store, m, leq(m, length(store)))
if3#(store, m, false) → process#(sndsplit(m, app(map_f(self, nil), store)), m)

sndsplit#(s(n), cons(h, t)) → sndsplit#(n, t)

map_f#(pid, cons(h, t)) → map_f#(pid, t)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

sndsplit#(s(n), cons(h, t))sndsplit#(n, t)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)if1(store, m, leq(m, length(store)))
if1(store, m, true)if2(store, m, empty(fstsplit(m, store)))if1(store, m, false)if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false)process(app(map_f(self, nil), sndsplit(m, store)), m)if3(store, m, false)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, if3, true, self, if1, if2, process, fstsplit, 0, s, sndsplit, length, empty, false, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

sndsplit#(s(n), cons(h, t))sndsplit#(n, t)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

app#(cons(h, t), x)app#(t, x)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)if1(store, m, leq(m, length(store)))
if1(store, m, true)if2(store, m, empty(fstsplit(m, store)))if1(store, m, false)if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false)process(app(map_f(self, nil), sndsplit(m, store)), m)if3(store, m, false)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, if3, true, self, if1, if2, process, fstsplit, 0, s, sndsplit, length, empty, false, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

app#(cons(h, t), x)app#(t, x)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

length#(cons(h, t))length#(t)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)if1(store, m, leq(m, length(store)))
if1(store, m, true)if2(store, m, empty(fstsplit(m, store)))if1(store, m, false)if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false)process(app(map_f(self, nil), sndsplit(m, store)), m)if3(store, m, false)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, if3, true, self, if1, if2, process, fstsplit, 0, s, sndsplit, length, empty, false, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

length#(cons(h, t))length#(t)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

fstsplit#(s(n), cons(h, t))fstsplit#(n, t)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)if1(store, m, leq(m, length(store)))
if1(store, m, true)if2(store, m, empty(fstsplit(m, store)))if1(store, m, false)if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false)process(app(map_f(self, nil), sndsplit(m, store)), m)if3(store, m, false)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, if3, true, self, if1, if2, process, fstsplit, 0, s, sndsplit, length, empty, false, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

fstsplit#(s(n), cons(h, t))fstsplit#(n, t)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

leq#(s(n), s(m))leq#(n, m)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)if1(store, m, leq(m, length(store)))
if1(store, m, true)if2(store, m, empty(fstsplit(m, store)))if1(store, m, false)if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false)process(app(map_f(self, nil), sndsplit(m, store)), m)if3(store, m, false)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, if3, true, self, if1, if2, process, fstsplit, 0, s, sndsplit, length, empty, false, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

leq#(s(n), s(m))leq#(n, m)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

map_f#(pid, cons(h, t))map_f#(pid, t)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)if1(store, m, leq(m, length(store)))
if1(store, m, true)if2(store, m, empty(fstsplit(m, store)))if1(store, m, false)if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false)process(app(map_f(self, nil), sndsplit(m, store)), m)if3(store, m, false)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, if3, true, self, if1, if2, process, fstsplit, 0, s, sndsplit, length, empty, false, cons, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

map_f#(pid, cons(h, t))map_f#(pid, t)