YES

The TRS could be proven terminating. The proof took 904 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (192ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (370ms).
 | – Problem 3 was processed with processor SubtermCriterion (3ms).
 |    | – Problem 9 was processed with processor DependencyGraph (0ms).
 | – Problem 4 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 10 was processed with processor DependencyGraph (9ms).
 | – Problem 5 was processed with processor SubtermCriterion (3ms).
 | – Problem 6 was processed with processor SubtermCriterion (2ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 | – Problem 8 was processed with processor PolynomialLinearRange4iUR (175ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

high#(n, add(m, x))le#(m, n)if_low#(true, n, add(m, x))low#(n, x)
quicksort#(add(n, x))high#(n, x)app#(add(n, x), y)app#(x, y)
if_high#(true, n, add(m, x))high#(n, x)if_high#(false, n, add(m, x))high#(n, x)
quicksort#(add(n, x))app#(quicksort(low(n, x)), add(n, quicksort(high(n, x))))if_low#(false, n, add(m, x))low#(n, x)
quicksort#(add(n, x))quicksort#(low(n, x))quot#(s(x), s(y))minus#(x, y)
quicksort#(add(n, x))low#(n, x)low#(n, add(m, x))if_low#(le(m, n), n, add(m, x))
high#(n, add(m, x))if_high#(le(m, n), n, add(m, x))le#(s(x), s(y))le#(x, y)
quot#(s(x), s(y))quot#(minus(x, y), s(y))minus#(s(x), s(y))minus#(x, y)
low#(n, add(m, x))le#(m, n)quicksort#(add(n, x))quicksort#(high(n, x))

Rewrite Rules

minus(x, 0)xminus(s(x), s(y))minus(x, y)
quot(0, s(y))0quot(s(x), s(y))s(quot(minus(x, y), s(y)))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, y)y
app(add(n, x), y)add(n, app(x, y))low(n, nil)nil
low(n, add(m, x))if_low(le(m, n), n, add(m, x))if_low(true, n, add(m, x))add(m, low(n, x))
if_low(false, n, add(m, x))low(n, x)high(n, nil)nil
high(n, add(m, x))if_high(le(m, n), n, add(m, x))if_high(true, n, add(m, x))high(n, x)
if_high(false, n, add(m, x))add(m, high(n, x))quicksort(nil)nil
quicksort(add(n, x))app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Original Signature

Termination of terms over the following signature is verified: app, minus, true, if_low, add, 0, s, le, false, if_high, high, low, quot, quicksort, nil

Strategy


The following SCCs where found

le#(s(x), s(y)) → le#(x, y)

quot#(s(x), s(y)) → quot#(minus(x, y), s(y))

app#(add(n, x), y) → app#(x, y)

minus#(s(x), s(y)) → minus#(x, y)

low#(n, add(m, x)) → if_low#(le(m, n), n, add(m, x))if_low#(true, n, add(m, x)) → low#(n, x)
if_low#(false, n, add(m, x)) → low#(n, x)

quicksort#(add(n, x)) → quicksort#(low(n, x))quicksort#(add(n, x)) → quicksort#(high(n, x))

high#(n, add(m, x)) → if_high#(le(m, n), n, add(m, x))if_high#(true, n, add(m, x)) → high#(n, x)
if_high#(false, n, add(m, x)) → high#(n, x)

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

quicksort#(add(n, x))quicksort#(low(n, x))quicksort#(add(n, x))quicksort#(high(n, x))

Rewrite Rules

minus(x, 0)xminus(s(x), s(y))minus(x, y)
quot(0, s(y))0quot(s(x), s(y))s(quot(minus(x, y), s(y)))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, y)y
app(add(n, x), y)add(n, app(x, y))low(n, nil)nil
low(n, add(m, x))if_low(le(m, n), n, add(m, x))if_low(true, n, add(m, x))add(m, low(n, x))
if_low(false, n, add(m, x))low(n, x)high(n, nil)nil
high(n, add(m, x))if_high(le(m, n), n, add(m, x))if_high(true, n, add(m, x))high(n, x)
if_high(false, n, add(m, x))add(m, high(n, x))quicksort(nil)nil
quicksort(add(n, x))app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Original Signature

Termination of terms over the following signature is verified: app, minus, true, if_low, add, 0, s, le, false, if_high, high, low, quot, quicksort, nil

Strategy


Polynomial Interpretation

Improved Usable rules

low(n, nil)nilif_low(true, n, add(m, x))add(m, low(n, x))
high(n, add(m, x))if_high(le(m, n), n, add(m, x))low(n, add(m, x))if_low(le(m, n), n, add(m, x))
if_low(false, n, add(m, x))low(n, x)if_high(false, n, add(m, x))add(m, high(n, x))
high(n, nil)nilif_high(true, n, add(m, x))high(n, x)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

quicksort#(add(n, x))quicksort#(low(n, x))quicksort#(add(n, x))quicksort#(high(n, x))

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

high#(n, add(m, x))if_high#(le(m, n), n, add(m, x))if_high#(true, n, add(m, x))high#(n, x)
if_high#(false, n, add(m, x))high#(n, x)

Rewrite Rules

minus(x, 0)xminus(s(x), s(y))minus(x, y)
quot(0, s(y))0quot(s(x), s(y))s(quot(minus(x, y), s(y)))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, y)y
app(add(n, x), y)add(n, app(x, y))low(n, nil)nil
low(n, add(m, x))if_low(le(m, n), n, add(m, x))if_low(true, n, add(m, x))add(m, low(n, x))
if_low(false, n, add(m, x))low(n, x)high(n, nil)nil
high(n, add(m, x))if_high(le(m, n), n, add(m, x))if_high(true, n, add(m, x))high(n, x)
if_high(false, n, add(m, x))add(m, high(n, x))quicksort(nil)nil
quicksort(add(n, x))app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Original Signature

Termination of terms over the following signature is verified: app, minus, true, if_low, add, 0, s, le, false, if_high, high, low, quot, quicksort, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

if_high#(true, n, add(m, x))high#(n, x)if_high#(false, n, add(m, x))high#(n, x)

Problem 9: DependencyGraph



Dependency Pair Problem

Dependency Pairs

high#(n, add(m, x))if_high#(le(m, n), n, add(m, x))

Rewrite Rules

minus(x, 0)xminus(s(x), s(y))minus(x, y)
quot(0, s(y))0quot(s(x), s(y))s(quot(minus(x, y), s(y)))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, y)y
app(add(n, x), y)add(n, app(x, y))low(n, nil)nil
low(n, add(m, x))if_low(le(m, n), n, add(m, x))if_low(true, n, add(m, x))add(m, low(n, x))
if_low(false, n, add(m, x))low(n, x)high(n, nil)nil
high(n, add(m, x))if_high(le(m, n), n, add(m, x))if_high(true, n, add(m, x))high(n, x)
if_high(false, n, add(m, x))add(m, high(n, x))quicksort(nil)nil
quicksort(add(n, x))app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Original Signature

Termination of terms over the following signature is verified: app, minus, true, if_low, add, 0, s, le, false, if_high, high, low, quicksort, quot, nil

Strategy


There are no SCCs!

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

low#(n, add(m, x))if_low#(le(m, n), n, add(m, x))if_low#(true, n, add(m, x))low#(n, x)
if_low#(false, n, add(m, x))low#(n, x)

Rewrite Rules

minus(x, 0)xminus(s(x), s(y))minus(x, y)
quot(0, s(y))0quot(s(x), s(y))s(quot(minus(x, y), s(y)))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, y)y
app(add(n, x), y)add(n, app(x, y))low(n, nil)nil
low(n, add(m, x))if_low(le(m, n), n, add(m, x))if_low(true, n, add(m, x))add(m, low(n, x))
if_low(false, n, add(m, x))low(n, x)high(n, nil)nil
high(n, add(m, x))if_high(le(m, n), n, add(m, x))if_high(true, n, add(m, x))high(n, x)
if_high(false, n, add(m, x))add(m, high(n, x))quicksort(nil)nil
quicksort(add(n, x))app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Original Signature

Termination of terms over the following signature is verified: app, minus, true, if_low, add, 0, s, le, false, if_high, high, low, quot, quicksort, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

if_low#(true, n, add(m, x))low#(n, x)if_low#(false, n, add(m, x))low#(n, x)

Problem 10: DependencyGraph



Dependency Pair Problem

Dependency Pairs

low#(n, add(m, x))if_low#(le(m, n), n, add(m, x))

Rewrite Rules

minus(x, 0)xminus(s(x), s(y))minus(x, y)
quot(0, s(y))0quot(s(x), s(y))s(quot(minus(x, y), s(y)))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, y)y
app(add(n, x), y)add(n, app(x, y))low(n, nil)nil
low(n, add(m, x))if_low(le(m, n), n, add(m, x))if_low(true, n, add(m, x))add(m, low(n, x))
if_low(false, n, add(m, x))low(n, x)high(n, nil)nil
high(n, add(m, x))if_high(le(m, n), n, add(m, x))if_high(true, n, add(m, x))high(n, x)
if_high(false, n, add(m, x))add(m, high(n, x))quicksort(nil)nil
quicksort(add(n, x))app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Original Signature

Termination of terms over the following signature is verified: app, minus, true, if_low, add, 0, s, le, false, if_high, high, low, quicksort, quot, nil

Strategy


There are no SCCs!

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

minus#(s(x), s(y))minus#(x, y)

Rewrite Rules

minus(x, 0)xminus(s(x), s(y))minus(x, y)
quot(0, s(y))0quot(s(x), s(y))s(quot(minus(x, y), s(y)))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, y)y
app(add(n, x), y)add(n, app(x, y))low(n, nil)nil
low(n, add(m, x))if_low(le(m, n), n, add(m, x))if_low(true, n, add(m, x))add(m, low(n, x))
if_low(false, n, add(m, x))low(n, x)high(n, nil)nil
high(n, add(m, x))if_high(le(m, n), n, add(m, x))if_high(true, n, add(m, x))high(n, x)
if_high(false, n, add(m, x))add(m, high(n, x))quicksort(nil)nil
quicksort(add(n, x))app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Original Signature

Termination of terms over the following signature is verified: app, minus, true, if_low, add, 0, s, le, false, if_high, high, low, quot, quicksort, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

minus#(s(x), s(y))minus#(x, y)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

le#(s(x), s(y))le#(x, y)

Rewrite Rules

minus(x, 0)xminus(s(x), s(y))minus(x, y)
quot(0, s(y))0quot(s(x), s(y))s(quot(minus(x, y), s(y)))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, y)y
app(add(n, x), y)add(n, app(x, y))low(n, nil)nil
low(n, add(m, x))if_low(le(m, n), n, add(m, x))if_low(true, n, add(m, x))add(m, low(n, x))
if_low(false, n, add(m, x))low(n, x)high(n, nil)nil
high(n, add(m, x))if_high(le(m, n), n, add(m, x))if_high(true, n, add(m, x))high(n, x)
if_high(false, n, add(m, x))add(m, high(n, x))quicksort(nil)nil
quicksort(add(n, x))app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Original Signature

Termination of terms over the following signature is verified: app, minus, true, if_low, add, 0, s, le, false, if_high, high, low, quot, quicksort, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

le#(s(x), s(y))le#(x, y)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

app#(add(n, x), y)app#(x, y)

Rewrite Rules

minus(x, 0)xminus(s(x), s(y))minus(x, y)
quot(0, s(y))0quot(s(x), s(y))s(quot(minus(x, y), s(y)))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, y)y
app(add(n, x), y)add(n, app(x, y))low(n, nil)nil
low(n, add(m, x))if_low(le(m, n), n, add(m, x))if_low(true, n, add(m, x))add(m, low(n, x))
if_low(false, n, add(m, x))low(n, x)high(n, nil)nil
high(n, add(m, x))if_high(le(m, n), n, add(m, x))if_high(true, n, add(m, x))high(n, x)
if_high(false, n, add(m, x))add(m, high(n, x))quicksort(nil)nil
quicksort(add(n, x))app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Original Signature

Termination of terms over the following signature is verified: app, minus, true, if_low, add, 0, s, le, false, if_high, high, low, quot, quicksort, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

app#(add(n, x), y)app#(x, y)

Problem 8: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

quot#(s(x), s(y))quot#(minus(x, y), s(y))

Rewrite Rules

minus(x, 0)xminus(s(x), s(y))minus(x, y)
quot(0, s(y))0quot(s(x), s(y))s(quot(minus(x, y), s(y)))
le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, y)y
app(add(n, x), y)add(n, app(x, y))low(n, nil)nil
low(n, add(m, x))if_low(le(m, n), n, add(m, x))if_low(true, n, add(m, x))add(m, low(n, x))
if_low(false, n, add(m, x))low(n, x)high(n, nil)nil
high(n, add(m, x))if_high(le(m, n), n, add(m, x))if_high(true, n, add(m, x))high(n, x)
if_high(false, n, add(m, x))add(m, high(n, x))quicksort(nil)nil
quicksort(add(n, x))app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Original Signature

Termination of terms over the following signature is verified: app, minus, true, if_low, add, 0, s, le, false, if_high, high, low, quot, quicksort, nil

Strategy


Polynomial Interpretation

Improved Usable rules

minus(s(x), s(y))minus(x, y)minus(x, 0)x

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

quot#(s(x), s(y))quot#(minus(x, y), s(y))