YES

The TRS could be proven terminating. The proof took 1033 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (102ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (345ms).
 |    | – Problem 5 was processed with processor PolynomialLinearRange4iUR (257ms).
 |    |    | – Problem 6 was processed with processor DependencyGraph (36ms).
 |    |    |    | – Problem 7 was processed with processor PolynomialLinearRange4iUR (63ms).
 |    |    |    |    | – Problem 8 was processed with processor DependencyGraph (0ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

if_reach_2#(false, x, y, edge(u, v, i), h)reach#(x, y, i, h)reach#(x, y, edge(u, v, i), h)eq#(x, u)
if_reach_1#(false, x, y, edge(u, v, i), h)reach#(x, y, i, edge(u, v, h))if_reach_1#(true, x, y, edge(u, v, i), h)if_reach_2#(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2#(false, x, y, edge(u, v, i), h)union#(i, h)eq#(s(x), s(y))eq#(x, y)
if_reach_1#(true, x, y, edge(u, v, i), h)eq#(y, v)if_reach_2#(false, x, y, edge(u, v, i), h)or#(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_2#(false, x, y, edge(u, v, i), h)reach#(v, y, union(i, h), empty)reach#(x, y, edge(u, v, i), h)if_reach_1#(eq(x, u), x, y, edge(u, v, i), h)
union#(edge(x, y, i), h)union#(i, h)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
union(empty, h)hunion(edge(x, y, i), h)edge(x, y, union(i, h))
reach(x, y, empty, h)falsereach(x, y, edge(u, v, i), h)if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h)if_reach_2(eq(y, v), x, y, edge(u, v, i), h)if_reach_2(true, x, y, edge(u, v, i), h)true
if_reach_2(false, x, y, edge(u, v, i), h)or(reach(x, y, i, h), reach(v, y, union(i, h), empty))if_reach_1(false, x, y, edge(u, v, i), h)reach(x, y, i, edge(u, v, h))

Original Signature

Termination of terms over the following signature is verified: reach, 0, edge, s, or, union, empty, true, false, if_reach_2, if_reach_1, eq

Strategy


The following SCCs where found

eq#(s(x), s(y)) → eq#(x, y)

if_reach_2#(false, x, y, edge(u, v, i), h) → reach#(x, y, i, h)if_reach_1#(false, x, y, edge(u, v, i), h) → reach#(x, y, i, edge(u, v, h))
if_reach_1#(true, x, y, edge(u, v, i), h) → if_reach_2#(eq(y, v), x, y, edge(u, v, i), h)if_reach_2#(false, x, y, edge(u, v, i), h) → reach#(v, y, union(i, h), empty)
reach#(x, y, edge(u, v, i), h) → if_reach_1#(eq(x, u), x, y, edge(u, v, i), h)

union#(edge(x, y, i), h) → union#(i, h)

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

if_reach_2#(false, x, y, edge(u, v, i), h)reach#(x, y, i, h)if_reach_1#(false, x, y, edge(u, v, i), h)reach#(x, y, i, edge(u, v, h))
if_reach_1#(true, x, y, edge(u, v, i), h)if_reach_2#(eq(y, v), x, y, edge(u, v, i), h)if_reach_2#(false, x, y, edge(u, v, i), h)reach#(v, y, union(i, h), empty)
reach#(x, y, edge(u, v, i), h)if_reach_1#(eq(x, u), x, y, edge(u, v, i), h)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
union(empty, h)hunion(edge(x, y, i), h)edge(x, y, union(i, h))
reach(x, y, empty, h)falsereach(x, y, edge(u, v, i), h)if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h)if_reach_2(eq(y, v), x, y, edge(u, v, i), h)if_reach_2(true, x, y, edge(u, v, i), h)true
if_reach_2(false, x, y, edge(u, v, i), h)or(reach(x, y, i, h), reach(v, y, union(i, h), empty))if_reach_1(false, x, y, edge(u, v, i), h)reach(x, y, i, edge(u, v, h))

Original Signature

Termination of terms over the following signature is verified: reach, 0, edge, s, or, union, empty, true, false, if_reach_2, if_reach_1, eq

Strategy


Polynomial Interpretation

Improved Usable rules

union(edge(x, y, i), h)edge(x, y, union(i, h))union(empty, h)h

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

if_reach_2#(false, x, y, edge(u, v, i), h)reach#(x, y, i, h)

Problem 5: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

if_reach_1#(false, x, y, edge(u, v, i), h)reach#(x, y, i, edge(u, v, h))if_reach_1#(true, x, y, edge(u, v, i), h)if_reach_2#(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2#(false, x, y, edge(u, v, i), h)reach#(v, y, union(i, h), empty)reach#(x, y, edge(u, v, i), h)if_reach_1#(eq(x, u), x, y, edge(u, v, i), h)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
union(empty, h)hunion(edge(x, y, i), h)edge(x, y, union(i, h))
reach(x, y, empty, h)falsereach(x, y, edge(u, v, i), h)if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h)if_reach_2(eq(y, v), x, y, edge(u, v, i), h)if_reach_2(true, x, y, edge(u, v, i), h)true
if_reach_2(false, x, y, edge(u, v, i), h)or(reach(x, y, i, h), reach(v, y, union(i, h), empty))if_reach_1(false, x, y, edge(u, v, i), h)reach(x, y, i, edge(u, v, h))

Original Signature

Termination of terms over the following signature is verified: reach, edge, 0, s, or, union, empty, if_reach_2, false, true, if_reach_1, eq

Strategy


Polynomial Interpretation

Improved Usable rules

union(edge(x, y, i), h)edge(x, y, union(i, h))union(empty, h)h

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

if_reach_2#(false, x, y, edge(u, v, i), h)reach#(v, y, union(i, h), empty)

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

if_reach_1#(false, x, y, edge(u, v, i), h)reach#(x, y, i, edge(u, v, h))if_reach_1#(true, x, y, edge(u, v, i), h)if_reach_2#(eq(y, v), x, y, edge(u, v, i), h)
reach#(x, y, edge(u, v, i), h)if_reach_1#(eq(x, u), x, y, edge(u, v, i), h)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
union(empty, h)hunion(edge(x, y, i), h)edge(x, y, union(i, h))
reach(x, y, empty, h)falsereach(x, y, edge(u, v, i), h)if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h)if_reach_2(eq(y, v), x, y, edge(u, v, i), h)if_reach_2(true, x, y, edge(u, v, i), h)true
if_reach_2(false, x, y, edge(u, v, i), h)or(reach(x, y, i, h), reach(v, y, union(i, h), empty))if_reach_1(false, x, y, edge(u, v, i), h)reach(x, y, i, edge(u, v, h))

Original Signature

Termination of terms over the following signature is verified: reach, 0, edge, s, or, union, empty, true, false, if_reach_2, if_reach_1, eq

Strategy


The following SCCs where found

if_reach_1#(false, x, y, edge(u, v, i), h) → reach#(x, y, i, edge(u, v, h))reach#(x, y, edge(u, v, i), h) → if_reach_1#(eq(x, u), x, y, edge(u, v, i), h)

Problem 7: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

if_reach_1#(false, x, y, edge(u, v, i), h)reach#(x, y, i, edge(u, v, h))reach#(x, y, edge(u, v, i), h)if_reach_1#(eq(x, u), x, y, edge(u, v, i), h)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
union(empty, h)hunion(edge(x, y, i), h)edge(x, y, union(i, h))
reach(x, y, empty, h)falsereach(x, y, edge(u, v, i), h)if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h)if_reach_2(eq(y, v), x, y, edge(u, v, i), h)if_reach_2(true, x, y, edge(u, v, i), h)true
if_reach_2(false, x, y, edge(u, v, i), h)or(reach(x, y, i, h), reach(v, y, union(i, h), empty))if_reach_1(false, x, y, edge(u, v, i), h)reach(x, y, i, edge(u, v, h))

Original Signature

Termination of terms over the following signature is verified: reach, 0, edge, s, or, union, empty, true, false, if_reach_2, if_reach_1, eq

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

if_reach_1#(false, x, y, edge(u, v, i), h)reach#(x, y, i, edge(u, v, h))

Problem 8: DependencyGraph



Dependency Pair Problem

Dependency Pairs

reach#(x, y, edge(u, v, i), h)if_reach_1#(eq(x, u), x, y, edge(u, v, i), h)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
union(empty, h)hunion(edge(x, y, i), h)edge(x, y, union(i, h))
reach(x, y, empty, h)falsereach(x, y, edge(u, v, i), h)if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h)if_reach_2(eq(y, v), x, y, edge(u, v, i), h)if_reach_2(true, x, y, edge(u, v, i), h)true
if_reach_2(false, x, y, edge(u, v, i), h)or(reach(x, y, i, h), reach(v, y, union(i, h), empty))if_reach_1(false, x, y, edge(u, v, i), h)reach(x, y, i, edge(u, v, h))

Original Signature

Termination of terms over the following signature is verified: reach, edge, 0, s, or, union, empty, if_reach_2, false, true, if_reach_1, eq

Strategy


There are no SCCs!

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

union#(edge(x, y, i), h)union#(i, h)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
union(empty, h)hunion(edge(x, y, i), h)edge(x, y, union(i, h))
reach(x, y, empty, h)falsereach(x, y, edge(u, v, i), h)if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h)if_reach_2(eq(y, v), x, y, edge(u, v, i), h)if_reach_2(true, x, y, edge(u, v, i), h)true
if_reach_2(false, x, y, edge(u, v, i), h)or(reach(x, y, i, h), reach(v, y, union(i, h), empty))if_reach_1(false, x, y, edge(u, v, i), h)reach(x, y, i, edge(u, v, h))

Original Signature

Termination of terms over the following signature is verified: reach, 0, edge, s, or, union, empty, true, false, if_reach_2, if_reach_1, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

union#(edge(x, y, i), h)union#(i, h)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

eq#(s(x), s(y))eq#(x, y)

Rewrite Rules

eq(0, 0)trueeq(0, s(x))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
or(true, y)trueor(false, y)y
union(empty, h)hunion(edge(x, y, i), h)edge(x, y, union(i, h))
reach(x, y, empty, h)falsereach(x, y, edge(u, v, i), h)if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h)if_reach_2(eq(y, v), x, y, edge(u, v, i), h)if_reach_2(true, x, y, edge(u, v, i), h)true
if_reach_2(false, x, y, edge(u, v, i), h)or(reach(x, y, i, h), reach(v, y, union(i, h), empty))if_reach_1(false, x, y, edge(u, v, i), h)reach(x, y, i, edge(u, v, h))

Original Signature

Termination of terms over the following signature is verified: reach, 0, edge, s, or, union, empty, true, false, if_reach_2, if_reach_1, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

eq#(s(x), s(y))eq#(x, y)