YES

The TRS could be proven terminating. The proof took 1312 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (119ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (180ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (155ms).
 |    | – Problem 5 was processed with processor BackwardsNarrowing (1ms).
 |    |    | – Problem 7 was processed with processor ForwardNarrowing (3ms).
 |    |    | – Problem 8 was processed with processor BackwardsNarrowing (0ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4 (85ms).
 |    | – Problem 6 was processed with processor PolynomialLinearRange4 (16ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

T(f_0(x_1, x_2))T(x_2)T(f_0(x_1, x_2))T(x_1)
T(f_1(x, y))f_1#(x, y)*top*_0#(a_1)*top*_0#(f_0(a_1, a_1))
*top*_0#(a_1)f_0#(a_1, a_1)f_0#(x0, a_1)f_1#(x0, f_0(a_1, a_1))
T(f_0(a_1, a_1))f_0#(a_1, a_1)f_0#(a_1, x0)f_1#(f_0(a_1, a_1), x0)
T(f_1(x_1, x_2))T(x_2)T(f_0(x, y))f_0#(x, y)
f_1#(x, f_1(y, z))f_1#(f_1(x, y), z)f_1#(x, f_0(y, z))f_1#(f_0(x, y), z)
T(f_1(x_1, x_2))T(x_1)f_1#(x, f_0(y, z))f_1#(f_1(x, y), z)
f_1#(x, f_1(y, z))f_1#(f_0(x, y), z)

Rewrite Rules

f_1(f_1(x, y), z)c_0f_1(f_0(x, y), z)c_0
f_1(x, f_1(y, z))f_1(f_0(x, y), z)f_1(x, f_1(y, z))f_1(f_1(x, y), z)
f_1(x, f_0(y, z))f_1(f_1(x, y), z)f_1(x, f_0(y, z))f_1(f_0(x, y), z)
*top*_0(a_1)*top*_0(f_0(a_1, a_1))f_0(a_1, x0)f_1(f_0(a_1, a_1), x0)
f_0(x0, a_1)f_1(x0, f_0(a_1, a_1))

Original Signature

Termination of terms over the following signature is verified: f_0, a_1, *top*_0, c_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_1) = μ(c_0) = μ(f_1) = ∅
μ(*top*_0) = μ(*top*_0#) = {1}
μ(f_0) = μ(f_0#) = {1, 2}


The following SCCs where found

*top*_0#(a_1) → *top*_0#(f_0(a_1, a_1))

f_1#(x, f_1(y, z)) → f_1#(f_1(x, y), z)f_1#(x, f_0(y, z)) → f_1#(f_0(x, y), z)
f_1#(x, f_0(y, z)) → f_1#(f_1(x, y), z)f_1#(x, f_1(y, z)) → f_1#(f_0(x, y), z)

T(f_0(x_1, x_2)) → T(x_2)T(f_0(x_1, x_2)) → T(x_1)
T(f_1(x_1, x_2)) → T(x_1)T(f_1(x_1, x_2)) → T(x_2)

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

*top*_0#(a_1)*top*_0#(f_0(a_1, a_1))

Rewrite Rules

f_1(f_1(x, y), z)c_0f_1(f_0(x, y), z)c_0
f_1(x, f_1(y, z))f_1(f_0(x, y), z)f_1(x, f_1(y, z))f_1(f_1(x, y), z)
f_1(x, f_0(y, z))f_1(f_1(x, y), z)f_1(x, f_0(y, z))f_1(f_0(x, y), z)
*top*_0(a_1)*top*_0(f_0(a_1, a_1))f_0(a_1, x0)f_1(f_0(a_1, a_1), x0)
f_0(x0, a_1)f_1(x0, f_0(a_1, a_1))

Original Signature

Termination of terms over the following signature is verified: f_0, a_1, *top*_0, c_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_1) = μ(c_0) = μ(f_1) = ∅
μ(*top*_0) = μ(*top*_0#) = {1}
μ(f_0) = μ(f_0#) = {1, 2}


Polynomial Interpretation

Standard Usable rules

f_1(x, f_1(y, z))f_1(f_0(x, y), z)f_1(x, f_0(y, z))f_1(f_1(x, y), z)
f_1(x, f_0(y, z))f_1(f_0(x, y), z)f_0(a_1, x0)f_1(f_0(a_1, a_1), x0)
f_1(f_1(x, y), z)c_0f_1(x, f_1(y, z))f_1(f_1(x, y), z)
f_0(x0, a_1)f_1(x0, f_0(a_1, a_1))f_1(f_0(x, y), z)c_0

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

*top*_0#(a_1)*top*_0#(f_0(a_1, a_1))

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

f_1#(x, f_1(y, z))f_1#(f_1(x, y), z)f_1#(x, f_0(y, z))f_1#(f_0(x, y), z)
f_1#(x, f_0(y, z))f_1#(f_1(x, y), z)f_1#(x, f_1(y, z))f_1#(f_0(x, y), z)

Rewrite Rules

f_1(f_1(x, y), z)c_0f_1(f_0(x, y), z)c_0
f_1(x, f_1(y, z))f_1(f_0(x, y), z)f_1(x, f_1(y, z))f_1(f_1(x, y), z)
f_1(x, f_0(y, z))f_1(f_1(x, y), z)f_1(x, f_0(y, z))f_1(f_0(x, y), z)
*top*_0(a_1)*top*_0(f_0(a_1, a_1))f_0(a_1, x0)f_1(f_0(a_1, a_1), x0)
f_0(x0, a_1)f_1(x0, f_0(a_1, a_1))

Original Signature

Termination of terms over the following signature is verified: f_0, a_1, *top*_0, c_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_1) = μ(c_0) = μ(f_1) = ∅
μ(*top*_0) = μ(*top*_0#) = {1}
μ(f_0) = μ(f_0#) = {1, 2}


Polynomial Interpretation

Standard Usable rules

f_1(x, f_0(y, z))f_1(f_1(x, y), z)f_1(x, f_1(y, z))f_1(f_0(x, y), z)
f_0(a_1, x0)f_1(f_0(a_1, a_1), x0)f_1(x, f_0(y, z))f_1(f_0(x, y), z)
f_1(x, f_1(y, z))f_1(f_1(x, y), z)f_1(f_1(x, y), z)c_0
f_0(x0, a_1)f_1(x0, f_0(a_1, a_1))f_1(f_0(x, y), z)c_0

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

f_1#(x, f_0(y, z))f_1#(f_0(x, y), z)f_1#(x, f_0(y, z))f_1#(f_1(x, y), z)

Problem 5: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

f_1#(x, f_1(y, z))f_1#(f_1(x, y), z)f_1#(x, f_1(y, z))f_1#(f_0(x, y), z)

Rewrite Rules

f_1(f_1(x, y), z)c_0f_1(f_0(x, y), z)c_0
f_1(x, f_1(y, z))f_1(f_0(x, y), z)f_1(x, f_1(y, z))f_1(f_1(x, y), z)
f_1(x, f_0(y, z))f_1(f_1(x, y), z)f_1(x, f_0(y, z))f_1(f_0(x, y), z)
*top*_0(a_1)*top*_0(f_0(a_1, a_1))f_0(a_1, x0)f_1(f_0(a_1, a_1), x0)
f_0(x0, a_1)f_1(x0, f_0(a_1, a_1))

Original Signature

Termination of terms over the following signature is verified: f_0, a_1, *top*_0, c_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_1) = μ(c_0) = μ(f_1) = ∅
μ(*top*_0) = μ(*top*_0#) = {1}
μ(f_0) = μ(f_0#) = {1, 2}


The left-hand side of the rule f_1#(x, f_1(y, z)) → f_1#(f_1(x, y), z) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule f_1#(x, f_1(y, z)) → f_1#(f_1(x, y), z) is deleted.

Problem 7: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

f_1#(x, f_1(y, z))f_1#(f_0(x, y), z)

Rewrite Rules

f_1(f_1(x, y), z)c_0f_1(f_0(x, y), z)c_0
f_1(x, f_1(y, z))f_1(f_0(x, y), z)f_1(x, f_1(y, z))f_1(f_1(x, y), z)
f_1(x, f_0(y, z))f_1(f_1(x, y), z)f_1(x, f_0(y, z))f_1(f_0(x, y), z)
*top*_0(a_1)*top*_0(f_0(a_1, a_1))f_0(a_1, x0)f_1(f_0(a_1, a_1), x0)
f_0(x0, a_1)f_1(x0, f_0(a_1, a_1))

Original Signature

Termination of terms over the following signature is verified: f_0, a_1, *top*_0, c_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_1) = μ(c_0) = μ(f_1) = ∅
μ(*top*_0) = μ(*top*_0#) = {1}
μ(f_0) = μ(f_0#) = {1, 2}


The right-hand side of the rule f_1#(x, f_1(y, z)) → f_1#(f_0(x, y), z) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule f_1#(x, f_1(y, z)) → f_1#(f_0(x, y), z) is deleted.

Problem 8: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

f_1#(x, f_1(y, z))f_1#(f_0(x, y), z)

Rewrite Rules

f_1(f_1(x, y), z)c_0f_1(f_0(x, y), z)c_0
f_1(x, f_1(y, z))f_1(f_0(x, y), z)f_1(x, f_1(y, z))f_1(f_1(x, y), z)
f_1(x, f_0(y, z))f_1(f_1(x, y), z)f_1(x, f_0(y, z))f_1(f_0(x, y), z)
*top*_0(a_1)*top*_0(f_0(a_1, a_1))f_0(a_1, x0)f_1(f_0(a_1, a_1), x0)
f_0(x0, a_1)f_1(x0, f_0(a_1, a_1))

Original Signature

Termination of terms over the following signature is verified: f_0, a_1, *top*_0, c_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_1) = μ(c_0) = μ(f_1) = ∅
μ(*top*_0) = μ(*top*_0#) = {1}
μ(f_0) = μ(f_0#) = {1, 2}


The left-hand side of the rule f_1#(x, f_1(y, z)) → f_1#(f_0(x, y), z) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule f_1#(x, f_1(y, z)) → f_1#(f_0(x, y), z) is deleted.

Problem 4: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

T(f_0(x_1, x_2))T(x_2)T(f_0(x_1, x_2))T(x_1)
T(f_1(x_1, x_2))T(x_1)T(f_1(x_1, x_2))T(x_2)

Rewrite Rules

f_1(f_1(x, y), z)c_0f_1(f_0(x, y), z)c_0
f_1(x, f_1(y, z))f_1(f_0(x, y), z)f_1(x, f_1(y, z))f_1(f_1(x, y), z)
f_1(x, f_0(y, z))f_1(f_1(x, y), z)f_1(x, f_0(y, z))f_1(f_0(x, y), z)
*top*_0(a_1)*top*_0(f_0(a_1, a_1))f_0(a_1, x0)f_1(f_0(a_1, a_1), x0)
f_0(x0, a_1)f_1(x0, f_0(a_1, a_1))

Original Signature

Termination of terms over the following signature is verified: f_0, a_1, *top*_0, c_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_1) = μ(c_0) = μ(f_1) = ∅
μ(*top*_0) = μ(*top*_0#) = {1}
μ(f_0) = μ(f_0#) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

T(f_0(x_1, x_2))T(x_2)T(f_0(x_1, x_2))T(x_1)

Problem 6: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

T(f_1(x_1, x_2))T(x_1)T(f_1(x_1, x_2))T(x_2)

Rewrite Rules

f_1(f_1(x, y), z)c_0f_1(f_0(x, y), z)c_0
f_1(x, f_1(y, z))f_1(f_0(x, y), z)f_1(x, f_1(y, z))f_1(f_1(x, y), z)
f_1(x, f_0(y, z))f_1(f_1(x, y), z)f_1(x, f_0(y, z))f_1(f_0(x, y), z)
*top*_0(a_1)*top*_0(f_0(a_1, a_1))f_0(a_1, x0)f_1(f_0(a_1, a_1), x0)
f_0(x0, a_1)f_1(x0, f_0(a_1, a_1))

Original Signature

Termination of terms over the following signature is verified: f_0, a_1, *top*_0, c_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_1) = μ(c_0) = μ(f_1) = ∅
μ(*top*_0) = μ(*top*_0#) = {1}
μ(f_0) = μ(f_0#) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

T(f_1(x_1, x_2))T(x_1)T(f_1(x_1, x_2))T(x_2)