YES

The TRS could be proven terminating. The proof took 4289 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (165ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (425ms).
 |    | – Problem 5 was processed with processor BackwardsNarrowing (4ms).
 |    |    | – Problem 10 was processed with processor ForwardNarrowing (2ms).
 |    |    | – Problem 11 was processed with processor BackwardsNarrowing (2ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (422ms).
 |    | – Problem 6 was processed with processor PolynomialLinearRange4 (200ms).
 |    |    | – Problem 8 was processed with processor PolynomialLinearRange4 (8ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4 (278ms).
 |    | – Problem 7 was processed with processor PolynomialLinearRange4 (190ms).
 |    |    | – Problem 9 was processed with processor BackwardsNarrowing (0ms).
 |    |    |    | – Problem 12 was processed with processor ForwardNarrowing (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

g_0#(f_1(f_0(g_0(x))))T(x)g_0#(f_1(f_0(g_0(x))))g_0#(x)
*top*_0#(f_0(f_1(f_0(g_0(x)))))T(x)f_0#(f_1(f_0(g_0(x))))f_1#(x)
g_0#(f_0(f_1(f_0(g_0(x)))))T(x)T(f_0(x))f_0#(x)
g_0#(g_1(b_0))f_0#(g_1(b_0))T(f_0(g_1(b_0)))f_0#(g_1(b_0))
f_0#(f_0(f_1(f_0(g_0(x)))))f_1#(f_0(x))*top*_0#(g_1(b_0))f_0#(g_1(b_0))
T(f_0(x_1))T(x_1)f_0#(f_1(f_0(g_1(x))))f_0#(x)
g_0#(f_0(f_1(f_0(g_0(x)))))g_0#(f_0(x))g_0#(f_0(f_1(f_0(g_0(x)))))f_0#(x)
*top*_0#(f_1(f_0(g_0(x))))T(x)*top*_0#(f_1(f_0(g_0(x))))*top*_0#(x)
*top*_0#(f_0(f_1(f_0(g_0(x)))))f_0#(x)f_1#(f_0(g_0(x)))T(x)
*top*_0#(f_1(f_0(g_1(x))))T(x)*top*_0#(f_1(f_0(g_1(x))))*top*_0#(x)
g_0#(g_1(b_0))g_0#(f_0(g_1(b_0)))*top*_0#(f_0(f_1(f_0(g_0(x)))))*top*_0#(f_0(x))
f_0#(f_1(f_0(g_1(x))))T(x)f_0#(g_1(b_0))f_1#(f_0(g_1(b_0)))
*top*_0#(g_1(b_0))*top*_0#(f_0(g_1(b_0)))

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, *top*_0, g_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0#) = μ(*top*_0) = μ(g_0) = μ(f_0#) = μ(*top*_0#) = {1}


The following SCCs where found

*top*_0#(f_1(f_0(g_1(x)))) → *top*_0#(x)*top*_0#(f_0(f_1(f_0(g_0(x))))) → *top*_0#(f_0(x))
*top*_0#(f_1(f_0(g_0(x)))) → *top*_0#(x)*top*_0#(g_1(b_0)) → *top*_0#(f_0(g_1(b_0)))

f_0#(f_1(f_0(g_1(x)))) → f_0#(x)f_0#(f_0(f_1(f_0(g_0(x))))) → f_1#(f_0(x))
f_0#(f_1(f_0(g_1(x)))) → T(x)f_0#(f_1(f_0(g_0(x)))) → f_1#(x)
f_1#(f_0(g_0(x))) → T(x)T(f_0(x)) → f_0#(x)
T(f_0(x_1)) → T(x_1)

g_0#(f_0(f_1(f_0(g_0(x))))) → g_0#(f_0(x))g_0#(f_1(f_0(g_0(x)))) → g_0#(x)
g_0#(g_1(b_0)) → g_0#(f_0(g_1(b_0)))

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

g_0#(f_0(f_1(f_0(g_0(x)))))g_0#(f_0(x))g_0#(f_1(f_0(g_0(x))))g_0#(x)
g_0#(g_1(b_0))g_0#(f_0(g_1(b_0)))

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, *top*_0, g_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0) = μ(*top*_0) = μ(g_0#) = μ(*top*_0#) = μ(f_0#) = {1}


Polynomial Interpretation

Standard Usable rules

*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))f_0(f_1(f_0(g_0(x))))f_1(x)
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))g_0(f_1(f_0(g_1(x))))g_1(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))
*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
f_1(f_0(g_0(x)))xg_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_0(g_1(b_0))f_1(f_0(g_1(b_0)))*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
g_0(f_1(f_0(g_0(x))))g_0(x)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

g_0#(f_0(f_1(f_0(g_0(x)))))g_0#(f_0(x))g_0#(f_1(f_0(g_0(x))))g_0#(x)

Problem 5: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

g_0#(g_1(b_0))g_0#(f_0(g_1(b_0)))

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, g_0, *top*_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0#) = μ(*top*_0) = μ(g_0) = μ(f_0#) = μ(*top*_0#) = {1}


The left-hand side of the rule g_0#(g_1(b_0)) → g_0#(f_0(g_1(b_0))) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g_0#(f_1(f_0(g_0(g_1(b_0))))) 
g_0#(g_0(f_1(f_0(g_1(b_0))))) 
Thus, the rule g_0#(g_1(b_0)) → g_0#(f_0(g_1(b_0))) is replaced by the following rules:
g_0#(g_0(f_1(f_0(g_1(b_0))))) → g_0#(f_0(g_1(b_0)))g_0#(f_1(f_0(g_0(g_1(b_0))))) → g_0#(f_0(g_1(b_0)))

Problem 10: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g_0#(g_1(b_0))g_0#(f_1(f_0(g_1(b_0))))

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, *top*_0, g_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0) = μ(*top*_0) = μ(g_0#) = μ(*top*_0#) = μ(f_0#) = {1}


The right-hand side of the rule g_0#(g_1(b_0)) → g_0#(f_1(f_0(g_1(b_0)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule g_0#(g_1(b_0)) → g_0#(f_1(f_0(g_1(b_0)))) is deleted.

Problem 11: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

g_0#(g_0(f_1(f_0(g_1(b_0)))))g_0#(f_0(g_1(b_0)))g_0#(f_1(f_0(g_0(g_1(b_0)))))g_0#(f_0(g_1(b_0)))

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, *top*_0, g_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0) = μ(*top*_0) = μ(g_0#) = μ(*top*_0#) = μ(f_0#) = {1}


The left-hand side of the rule g_0#(g_0(f_1(f_0(g_1(b_0))))) → g_0#(f_0(g_1(b_0))) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g_0#(f_1(f_0(g_0(g_0(f_1(f_0(g_1(b_0)))))))) 
g_0#(g_0(f_0(g_1(b_0)))) 
g_0#(g_0(f_0(f_0(f_1(f_0(g_0(g_1(b_0)))))))) 
g_0#(g_0(f_1(f_0(g_0(f_1(f_0(g_1(b_0)))))))) 
g_0#(g_0(f_0(f_1(f_0(g_0(f_0(g_1(b_0)))))))) 
Thus, the rule g_0#(g_0(f_1(f_0(g_1(b_0))))) → g_0#(f_0(g_1(b_0))) is replaced by the following rules:
g_0#(g_0(f_1(f_0(g_0(f_1(f_0(g_1(b_0)))))))) → g_0#(f_0(g_1(b_0)))g_0#(g_0(f_0(f_0(f_1(f_0(g_0(g_1(b_0)))))))) → g_0#(f_0(g_1(b_0)))
g_0#(g_0(f_0(f_1(f_0(g_0(f_0(g_1(b_0)))))))) → g_0#(f_0(g_1(b_0)))g_0#(g_0(f_0(g_1(b_0)))) → g_0#(f_0(g_1(b_0)))
g_0#(f_1(f_0(g_0(g_0(f_1(f_0(g_1(b_0)))))))) → g_0#(f_0(g_1(b_0)))

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

f_0#(f_1(f_0(g_1(x))))f_0#(x)f_0#(f_0(f_1(f_0(g_0(x)))))f_1#(f_0(x))
f_0#(f_1(f_0(g_1(x))))T(x)f_0#(f_1(f_0(g_0(x))))f_1#(x)
f_1#(f_0(g_0(x)))T(x)T(f_0(x))f_0#(x)
T(f_0(x_1))T(x_1)

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, *top*_0, g_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0) = μ(*top*_0) = μ(g_0#) = μ(*top*_0#) = μ(f_0#) = {1}


Polynomial Interpretation

Standard Usable rules

*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))f_0(f_1(f_0(g_0(x))))f_1(x)
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))g_0(f_1(f_0(g_1(x))))g_1(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))
*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
f_1(f_0(g_0(x)))xg_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_0(g_1(b_0))f_1(f_0(g_1(b_0)))*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
g_0(f_1(f_0(g_0(x))))g_0(x)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

f_0#(f_1(f_0(g_1(x))))f_0#(x)f_0#(f_1(f_0(g_1(x))))T(x)

Problem 6: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

f_0#(f_0(f_1(f_0(g_0(x)))))f_1#(f_0(x))f_0#(f_1(f_0(g_0(x))))f_1#(x)
f_1#(f_0(g_0(x)))T(x)T(f_0(x_1))T(x_1)
T(f_0(x))f_0#(x)

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, g_0, *top*_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0#) = μ(*top*_0) = μ(g_0) = μ(f_0#) = μ(*top*_0#) = {1}


Polynomial Interpretation

Standard Usable rules

*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))f_0(f_1(f_0(g_0(x))))f_1(x)
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))g_0(f_1(f_0(g_1(x))))g_1(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))
*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
f_1(f_0(g_0(x)))xg_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_0(g_1(b_0))f_1(f_0(g_1(b_0)))*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
g_0(f_1(f_0(g_0(x))))g_0(x)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

f_0#(f_0(f_1(f_0(g_0(x)))))f_1#(f_0(x))f_0#(f_1(f_0(g_0(x))))f_1#(x)
f_1#(f_0(g_0(x)))T(x)T(f_0(x))f_0#(x)

Problem 8: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

T(f_0(x_1))T(x_1)

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, *top*_0, g_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0) = μ(*top*_0) = μ(g_0#) = μ(*top*_0#) = μ(f_0#) = {1}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

T(f_0(x_1))T(x_1)

Problem 4: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

*top*_0#(f_1(f_0(g_1(x))))*top*_0#(x)*top*_0#(f_0(f_1(f_0(g_0(x)))))*top*_0#(f_0(x))
*top*_0#(f_1(f_0(g_0(x))))*top*_0#(x)*top*_0#(g_1(b_0))*top*_0#(f_0(g_1(b_0)))

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, *top*_0, g_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0) = μ(*top*_0) = μ(g_0#) = μ(*top*_0#) = μ(f_0#) = {1}


Polynomial Interpretation

Standard Usable rules

*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))f_0(f_1(f_0(g_0(x))))f_1(x)
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))g_0(f_1(f_0(g_1(x))))g_1(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))
*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
f_1(f_0(g_0(x)))xg_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_0(g_1(b_0))f_1(f_0(g_1(b_0)))*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
g_0(f_1(f_0(g_0(x))))g_0(x)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

*top*_0#(f_1(f_0(g_1(x))))*top*_0#(x)

Problem 7: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

*top*_0#(f_0(f_1(f_0(g_0(x)))))*top*_0#(f_0(x))*top*_0#(f_1(f_0(g_0(x))))*top*_0#(x)
*top*_0#(g_1(b_0))*top*_0#(f_0(g_1(b_0)))

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, g_0, *top*_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0#) = μ(*top*_0) = μ(g_0) = μ(f_0#) = μ(*top*_0#) = {1}


Polynomial Interpretation

Standard Usable rules

*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))f_0(f_1(f_0(g_0(x))))f_1(x)
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))g_0(f_1(f_0(g_1(x))))g_1(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))
*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
f_1(f_0(g_0(x)))xg_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_0(g_1(b_0))f_1(f_0(g_1(b_0)))*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
g_0(f_1(f_0(g_0(x))))g_0(x)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

*top*_0#(f_0(f_1(f_0(g_0(x)))))*top*_0#(f_0(x))*top*_0#(f_1(f_0(g_0(x))))*top*_0#(x)

Problem 9: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

*top*_0#(g_1(b_0))*top*_0#(f_0(g_1(b_0)))

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, *top*_0, g_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0) = μ(*top*_0) = μ(g_0#) = μ(*top*_0#) = μ(f_0#) = {1}


The left-hand side of the rule *top*_0#(g_1(b_0)) → *top*_0#(f_0(g_1(b_0))) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
*top*_0#(g_0(f_1(f_0(g_1(b_0))))) 
*top*_0#(f_1(f_0(g_0(g_1(b_0))))) 
Thus, the rule *top*_0#(g_1(b_0)) → *top*_0#(f_0(g_1(b_0))) is replaced by the following rules:
*top*_0#(g_0(f_1(f_0(g_1(b_0))))) → *top*_0#(f_0(g_1(b_0)))*top*_0#(f_1(f_0(g_0(g_1(b_0))))) → *top*_0#(f_0(g_1(b_0)))

Problem 12: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

*top*_0#(g_1(b_0))*top*_0#(f_1(f_0(g_1(b_0))))

Rewrite Rules

*top*_0(f_1(f_0(g_1(x))))*top*_0(x)f_0(f_1(f_0(g_1(x))))f_0(x)
g_0(f_1(f_0(g_1(x))))g_1(x)*top*_0(f_0(f_1(f_0(g_0(x)))))*top*_0(f_0(x))
f_0(f_0(f_1(f_0(g_0(x)))))f_1(f_0(x))g_0(f_0(f_1(f_0(g_0(x)))))g_0(f_0(x))
f_1(f_0(g_0(x)))x*top*_0(f_1(f_0(g_0(x))))*top*_0(x)
f_0(f_1(f_0(g_0(x))))f_1(x)g_0(f_1(f_0(g_0(x))))g_0(x)
*top*_0(g_1(b_0))*top*_0(f_0(g_1(b_0)))f_0(g_1(b_0))f_1(f_0(g_1(b_0)))
g_0(g_1(b_0))g_0(f_0(g_1(b_0)))

Original Signature

Termination of terms over the following signature is verified: f_0, g_0, *top*_0, g_1, b_0, f_1

Strategy

Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(g_0#) = μ(*top*_0) = μ(g_0) = μ(f_0#) = μ(*top*_0#) = {1}


The right-hand side of the rule *top*_0#(g_1(b_0)) → *top*_0#(f_1(f_0(g_1(b_0)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule *top*_0#(g_1(b_0)) → *top*_0#(f_1(f_0(g_1(b_0)))) is deleted.